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Preface

This book is aimed at the data scientist with some familiarity with the R

programming language, and with some prior (perhaps spotty or ephemeral)

exposure to statistics. Both of us came to the world of data science from the

world of statistics, so we have some appreciation of the contribution that

statistics can make to the art of data science. At the same time, we are well

aware of the limitations of traditional statistics instruction: statistics as a

discipline is a century and a half old, and most statistics textbooks and

courses are laden with the momentum and inertia of an ocean liner.

Two goals underlie this book:

To lay out, in digestible, navigable, and easily referenced form, key

concepts from statistics that are relevant to data science.

To explain which concepts are important and useful from a data science

perspective, which are less so, and why.

What to Expect

Key Terms

Data science is a fusion of multiple disciplines, including statistics,

computer science, information technology, and domain-specific fields.

As a result, several different terms could be used to reference a given

concept. Key terms and their synonyms will be highlighted throughout

the book in a sidebar such as this.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file



extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to

program elements such as variable or function names, databases, data

types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the

user.

Constant width italic

Shows text that should be replaced with user-supplied values or by

values determined by context.

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for

download at https://github.com/andrewgbruce/statistics-for-data-scientists.

This book is here to help you get your job done. In general, if example code

is offered with this book, you may use it in your programs and

documentation. You do not need to contact us for permission unless you’re

reproducing a significant portion of the code. For example, writing a

program that uses several chunks of code from this book does not require

permission. Selling or distributing a CD-ROM of examples from O’Reilly



books does require permission. Answering a question by citing this book

and quoting example code does not require permission. Incorporating a

significant amount of example code from this book into your product’s

documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually

includes the title, author, publisher, and ISBN. For example: “Practical

Statistics for Data Scientists by Peter Bruce and Andrew Bruce (O’Reilly).

Copyright 2017 Peter Bruce and Andrew Bruce, 978-1-491-95296-2.”

If you feel your use of code examples falls outside fair use or the

permission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert

content in both book and video form from the world’s leading authors in

technology and business.

Technology professionals, software developers, web designers, and

business and creative professionals use Safari Books Online as their

primary resource for research, problem solving, learning, and certification

training.

Safari Books Online offers a range of plans and pricing for enterprise,

government, education, and individuals.

Members have access to thousands of books, training videos, and

prepublication manuscripts in one fully searchable database from publishers

like O’Reilly Media, Prentice Hall Professional, Addison-Wesley

Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press,

Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM

Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,

McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more.

For more information about Safari Books Online, please visit us online.
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Please address comments and questions concerning this book to the

publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any

additional information. You can access this page at

http://bit.ly/practicalStats_for_DataScientists.

To comment or ask technical questions about this book, send email to

bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see

our website at http://www.oreilly.com.
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Chapter 1. Exploratory Data Analysis

As
a discipline, statistics

has
mostly developed in

the past
century. Probability theory—the mathematical

foundation for statistics—was developed in the 17th to 19th centuries based on work by Thomas Bayes,

Pierre-Simon Laplace, and Carl Gauss. In contrast to the purely theoretical nature of probability, statistics

is an applied science concerned with analysis and modeling of data. Modern statistics as a rigorous

scientific discipline traces its roots back to the late 1800s and Francis Galton and Karl Pearson. R. A.

Fisher, in the early 20th century, was a leading pioneer of modern statistics, introducing key ideas of

experimental design and maximum likelihood estimation. These and many other statistical concepts live

largely in the recesses of data science. The main goal of this book is to help illuminate these concepts and

clarify their importance—or lack thereof—in the context of data science and big data.

This chapter focuses on the first step in any data science project: exploring the data. Exploratory data

analysis, or EDA, is a comparatively new area of statistics. Classical statistics focused almost exclusively

on inference, a sometimes complex set of procedures for drawing conclusions about large populations

based on small samples. In 1962, John W. Tukey (Figure 1-1) called for a reformation of statistics in his

seminal paper “The Future of Data Analysis” [Tukey-1962]. He proposed a new scientific discipline called

data analysis that included statistical inference as just one component. Tukey forged links to the

engineering and computer science communities (he coined the terms bit, short for binary digit, and

software), and his original tenets are suprisingly durable and form part of the foundation for data science.

The field of exploratory data analysis was established with Tukey’s 1977 now-classic book Exploratory

Data Analysis [Tukey-1977].

Figure
1-1. John Tukey, the eminent statistician whose ideas developed over 50 years ago form the foundation of data

science.

With the ready availablility of computing power and expressive data analysis software, exploratory data

analysis has evolved well beyond its original scope. Key drivers of this discipline have been the rapid

development of new technology, access to more and bigger data, and the greater use of quantitative

analysis in a variety of disciplines. David Donoho, professor of statistics at Stanford University and former

undergraduate student of Tukey’s, authored an excellent article based on his presentation at the Tukey

Centennial workshop in Princeton, New Jersey [Donoho-2015]. Donoho traces the genesis of data science

back to Tukey’s pioneering work in data analysis.



Elements of Structured Data

Data comes from many sources: sensor measurements, events, text, images, and videos. The Internet of

Things (IoT) is spewing out streams of information. Much of this data is unstructured: images are a

collection of pixels with each pixel containing RGB (red, green, blue) color information. Texts are

sequences of words and nonword characters, often organized by sections, subsections, and so on.

Clickstreams are sequences of actions by a user interacting with an app or web page. In fact, a major

challenge
of

data science
is

to harness this torrent
of raw data

into actionable information.
To apply

the

statistical concepts covered in this book, unstructured raw data must be processed and manipulated into a

structured form—as it might emerge from a relational database—or be collected for a study.

Key Terms for Data Types

Continuous

Data that can take on any value in an interval.

Synonyms

interval, float, numeric

Discrete

Data that can take on only integer values, such as counts.

Synonyms

integer, count

Categorical

Data
that

can
take

on
only a specific

set of
values representing a set

of
possible categories.

Synonyms

enums, enumerated, factors, nominal, polychotomous

Binary

A special case of categorical data with just two categories of values (0/1, true/false).

Synonyms

dichotomous, logical, indicator, boolean

Ordinal

Categorical data that has an explicit ordering.

Synonyms

ordered factor

There are two basic types of structured data: numeric and categorical. Numeric data comes in two forms:

continuous, such as wind speed or time duration, and discrete, such as the count of the occurrence of an

event. Categorical data takes
only

a fixed set
of

values, such as a type
of TV

screen (plasma,
LCD, LED,



etc.) or a state name (Alabama, Alaska, etc.). Binary data is an important special case of categorical data

that takes on only one of two values, such as 0/1, yes/no, or true/false. Another useful type of categorical

data is ordinal data in which the categories are ordered; an example of this is a numerical rating (1, 2, 3, 4,

or 5).

Why do we bother with a taxonomy of data types? It turns out that for the purposes of data analysis and

predictive modeling, the data type is important to help determine the type of visual display, data analysis,

or statistical model. In fact, data science software, such as R and Python, uses these data types to improve

computational performance. More important, the data type for a variable determines how software will

handle computations for that variable.

Software engineers and database programmers may wonder why we even need the notion of categorical

and ordinal data for analytics. After all, categories are merely a collection of text (or numeric) values, and

the underlying database automatically handles the internal representation. However, explicit identification

of data as categorical, as distinct from text, does offer some advantages:

Knowing that data is categorical can act as a signal telling software how statistical procedures, such as

producing a chart or fitting a model, should behave. In particular, ordinal data can be represented as an

ordered.factor in R and Python, preserving a user-specified ordering in charts, tables, and models.

Storage and indexing can be optimized (as in a relational database).

The possible values a given categorical variable can take are enforced in the software (like an enum).

The third “benefit” can lead to unintended or unexpected behavior: the default behavior of data import

functions in R (e.g., read.csv) is to automatically convert a text column into a factor. Subsequent

operations
on

that column will
assume that

the
only

allowable values for
that

column
are the

ones

originally imported, and assigning a new text value will introduce a warning and produce an NA (missing

value).

Key Ideas

Data is typically classified in software by type.

Data types include continuous, discrete, categorical (which includes binary), and ordinal.

Data typing in software acts as a signal to the software on how to process the data.

Further Reading

Data types can be confusing, since types may overlap, and the taxonomy in one software may differ

from that in another. The R-Tutorial website covers the taxonomy for R.

Databases are more detailed in their classification of data types, incorporating considerations of

precision levels, fixed- or variable-length fields, and more; see the W3Schools guide for SQL.

Rectangular Data

The typical frame of reference for an analysis in data science is a rectangular data object, like a



spreadsheet or database table.

Key Terms for Rectangular Data

Data frame

Rectangular data (like a spreadsheet) is the basic data structure for statistical and machine learning

models.

Feature

A column in the table is commonly referred to as a feature.

Synonyms

attribute, input, predictor, variable

Outcome

Many data science projects involve predicting an outcome—often a yes/no outcome (in Table 1-1,

it
is “auction

was
competitive

or
not”).

The
features are sometimes used to predict the outcome

in

an experiment or study.

Synonyms

dependent variable, response, target, output

Records

A row in the table is commonly referred to as a record.

Synonyms

case, example, instance, observation, pattern,
sample

Rectangular data is essentially a two-dimensional matrix with rows indicating records (cases) and columns

indicating features (variables). The data doesn’t always start in this form: unstructured data (e.g., text)

must be processed and manipulated so that it can be represented as a set of features in the rectangular data

(see “Elements of Structured Data”). Data in relational databases must be extracted and put into a single

table for most data analysis and modeling tasks.

In Table 1-1, there is a mix of measured or counted data (e.g., duration and price), and categorical data

(e.g., category and currency). As mentioned earlier, a special form of categorical variable is a binary

(yes/no or 0/1) variable, seen in the rightmost column in Table 1-1—an indicator variable showing whether

an auction was competitive or not.



Table
1-1.

A typical data format

Category currency sellerRating Duration endDay
ClosePrice

OpenPrice Competitive?

Music/Movie/Game US 3249 5 Mon 0.01 0.01 0

Music/Movie/Game US 3249 5 Mon 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 0

Automotive US 3115 7 Tue 0.01 0.01 1

Automotive US 3115 7 Tue 0.01 0.01 1

Data Frames and Indexes

Traditional database tables have one or more columns designated as an index. This can vastly improve the

efficiency of certain SQL queries. In Python, with the pandas library, the basic rectangular data structure

is a DataFrame object. By default, an automatic integer index is created for a DataFrame based on the

order of the rows. In pandas, it is also possible to set multilevel/hierarchical indexes to improve the

efficiency of certain operations.

In R, the basic rectangular data structure is a data.frame object. A data.frame also has an implicit

integer index based on the row order. While a custom key can be created through the row.names attribute,

the native R data.frame does not support user-specified or multilevel indexes. To overcome this

deficiency, two new packages are gaining widespread use: data.table and dplyr. Both support

multilevel indexes and offer significant speedups in working with a data.frame.

Terminology Differences

Terminology for rectangular data can be confusing. Statisticians and data scientists use different terms for

the same thing. For a statistician, predictor variables are used in a model to predict a response or

dependent variable.
For

a data scientist, features are
used to

predict a target. One synonym is particularly

confusing: computer scientists will use the term sample for a single row; a sample to a statistician means a

collection of rows.

Nonrectangular Data Structures

There are other data structures besides rectangular data.

Time series data records successive measurements of the same variable. It is the raw material for statistical

forecasting methods, and it is also a key component of the data produced by devices—the Internet of

Things.

Spatial data structures, which are
used in

mapping
and

location analytics, are more complex
and

varied

than rectangular data structures.
In the

object representation,
the

focus
of the

data is
an

object
(e.g.,

a



house) and its spatial coordinates. The field view, by contrast, focuses on small units of space and the

value of a relevant metric (pixel brightness, for example).

Graph (or network) data structures are used to represent physical, social, and abstract relationships. For

example, a graph of a social network, such as Facebook or LinkedIn, may represent connections between

people on the network. Distribution hubs connected by roads are an example of a physical network. Graph

structures are useful for certain types of problems, such as network optimization and recommender

systems.

Each of these data types has its specialized methodology in data science. The focus of this book is on

rectangular data, the fundamental building block of predictive modeling.

Graphs in Statistics

In computer science and information technology, the term graph typically refers to a depiction of the

connections among entities, and to the underlying data structure. In statistics, graph is used to refer to a

variety of plots and visualizations, not just of connections among entities, and the term applies just to the

visualization, not to the data structure.

Key Ideas

The basic data structure in data science is a rectangular matrix in which rows are records and

columns are variables (features).

Terminology can be confusing; there are a variety of synonyms arising from the different

disciplines that contribute to data science (statistics, computer science, and information

technology).

Further Reading

Documentation on data frames in R

Documentation on data frames in Python

Estimates of Location

Variables with measured or count data might have thousands of distinct values. A basic step in exploring

your data is getting a “typical value” for each feature (variable): an estimate of where most of the data is

located (i.e., its central tendency).



Key Terms for Estimates of Location

Mean

The sum of all values divided by the number of values.

Synonyms

average

Weighted mean

The sum of all values times a weight divided by the sum of the weights.

Synonyms

weighted average

Median

The value such that one-half of the data lies above and below.

Synonyms

50th percentile

Weighted median

The value such that one-half of the sum of the weights lies above and below the sorted data.

Trimmed mean

The average of all values after dropping a fixed number of extreme values.

Synonyms

truncated mean

Robust

Not sensitive to extreme values.

Synonyms

resistant

Outlier

A data value that is very different from most of the data.

Synonyms

extreme value

At first glance, summarizing data might seem fairly trivial: just take the mean of the data (see “Mean”). In

fact, while the mean is easy to compute and expedient to use, it may not always be the best measure for a

central value. For this reason, statisticians have developed and promoted several alternative estimates to

the mean.



Metrics and Estimates

Statisticians often use the term estimates for values calculated from the data at hand, to draw a distinction

between what we see from the data, and the theoretical true or exact state of affairs. Data scientists and

business analysts are more likely to refer to such values as a metric. The difference reflects the approach of

statistics versus data science: accounting for uncertainty lies at the heart of the discipline of statistics,

whereas concrete business or organizational objectives are the focus of data science. Hence, statisticians

estimate, and data scientists measure.

Mean

The most basic estimate of location is the mean, or average value. The mean is the sum of all the values

divided by the number of values. Consider the following set of numbers: {35 12}. The mean is (3 + 5 + 1

+2)/4 = 11/4 = 2.75. You will encounter the symbol (pronounced “x-bar”) to represent the mean of a

sample from a population. The formula to compute the mean for a set of n values is:

Note

N (or n) refers to the total number of records or observations. In statistics it is capitalized if it is referring to

a population, and lowercase if it refers to a sample from a population. In data science, that distinction is not

vital so you may see it both ways.

A variation of the mean is a trimmed mean, which you calculate by dropping a fixed number of sorted

values at
each end and then

taking
an

average
of the

remaining values. Representing the sorted values by

the largest, the formula
to

computewhere is the smallest value and

the trimmed mean with smallest and largest values omitted is:

A trimmed mean eliminates the influence of extreme values. For example, in international diving the top

and bottom scores from five judges are dropped, and the final score is the average of the three remaining

judges [Wikipedia-2016]. This makes it difficult for a single judge to manipulate the score, perhaps to

favor his country’s contestant. Trimmed means are widely used, and in many cases, are preferable to use

instead of the ordinary mean: see “Median and Robust Estimates” for further discussion.

Another type of mean is a weighted mean, which you calculate by multiplying each data value by a

weight and dividing their sum by the sum of the weights. The formula for a weighted mean is:



There are two main motivations for using a weighted mean:

Some values are intrinsically more variable than others, and highly variable observations are given a

lower weight. For example, if we are taking the average from multiple sensors and one of the sensors is

less accurate, then we might downweight the data from that sensor.

The data collected does not equally represent the different groups that we are interested in measuring.

For example, because of the way an online experiment was conducted, we may not have a set of data

that accurately reflects all groups in the user base. To correct that, we can give a higher weight to the

values from the groups that were underrepresented.

Median and Robust Estimates

The median is the middle number on a sorted list of the data. If there is an even number of data values, the

middle value is one that is not actually in the data set, but rather the average of the two values that divide

the sorted data into upper and lower halves. Compared to the mean, which uses all observations, the

median depends only on the values in the center of the sorted data. While this might seem to be a

disadvantage, since the mean is much more sensitive to the data, there are many instances in which the

median is a better metric for location. Let’s say we want to look at typical household incomes in

neighborhoods around Lake Washington in Seattle. In comparing the Medina neighborhood to the

Windermere neighborhood, using the mean would produce very different results because Bill Gates lives

in Medina. If we use the median, it won’t matter how rich Bill Gates is—the position of the middle

observation will remain the same.

For the same reasons that one uses a weighted mean, it is also possible to compute a weighted median. As

with the median, we first sort the data, although each data value has an associated weight. Instead of the

middle number, the weighted median is a value such that the sum of the weights is equal for the lower and

upper halves of the sorted list. Like the median, the weighted median is robust to outliers.

Outliers

The median is referred to as a robust estimate of location since it is not influenced by outliers (extreme

cases) that could skew the results. An outlier is any value that is very distant from the other values in a data

set. The exact definition of an outlier is somewhat subjective, although certain conventions are used in

various data summaries and plots (see “Percentiles and Boxplots”). Being an outlier in itself does not make

a data value invalid or erroneous (as in the previous example with Bill Gates). Still, outliers are often the

result of data errors such as mixing data of different units (kilometers versus meters) or bad readings from

a sensor. When outliers are the result of bad data, the mean will result in a poor estimate of location, while

the median will be still be valid. In any case, outliers should be identified and are usually worthy of further

investigation.

Anomaly Detection

In contrast to typical data analysis, where outliers are sometimes informative and sometimes a nuisance, in



anomaly detection the points of interest are the outliers, and the greater mass of data serves primarily to

define the “normal” against which anomalies are measured.

The median is not the only robust estimate of location. In fact, a trimmed mean is widely used to avoid the

influence of outliers. For example, trimming the bottom and top 10% (a common choice) of the data will

provide protection against outliers in all but the smallest data sets. The trimmed mean can be thought of as

a compromise between the median and the mean: it is robust to extreme values in the data, but uses more

data to calculate the estimate for location.

Other Robust Metrics for Location

Statisticians have developed a plethora of other estimators for location, primarily with the goal of

developing an estimator more robust than the mean and also more efficient (i.e., better able to discern small

location differences between data sets). While these methods are potentially useful for small data sets, they

are not likely to provide added benefit for large or even moderately sized data sets.

Example: Location Estimates of Population and Murder Rates

Table 1-2 shows the first few rows in the data set containing population and murder rates (in units of

murders per 100,000 people per year) for each state.

Table 1-2. A few rows of the

data.frame state of population and

murder rate by state

State Population Murder rate

1 Alabama 4,779,736 5.7

2 Alaska 710,231 5.6

3 Arizona 6,392,017 4.7

4 Arkansas 2,915,918 5.6

5 California 37,253,956 4.4

6 Colorado 5,029,196 2.8

7 Connecticut 3,574,097 2.4

8 Delaware 897,934 5.8

Compute the mean, trimmed mean, and median for the population using R:

> state <- read.csv(file="/Users/andrewbruce1/book/state.csv")

> mean(state[["Population"]])

[1] 6162876

> mean(state[["Population"]], trim=0.1)

[1] 4783697

> median(state[["Population"]])

[1] 4436370



The mean is bigger than the trimmed mean, which is bigger than the median.

This is because the trimmed mean excludes the largest and smallest five states (trim=0.1 drops 10% from

each end). If we want to compute the average murder rate for the country, we need to use a weighted mean

or median to account for different populations in the states. Since base R doesn’t have a function for

weighted median, we need to install a package such as matrixStats:

> weighted.mean(state[["Murder.Rate"]], w=state[["Population"]])

[1] 4.445834

> library("matrixStats")

> weightedMedian(state[["Murder.Rate"]], w=state[["Population"]])

[1] 4.4

In this case, the weighted mean and median are about the same.

Key Ideas

The basic metric for location is the mean, but it can be sensitive to extreme values (outlier).

Other metrics (median, trimmed mean) are more robust.

Further Reading

Michael Levine (Purdue University) has posted some useful slides on basic calculations for measures of

location.

John Tukey’s 1977 classic Exploratory Data Analysis (Pearson) is still widely read.

Estimates of Variability

Location is just one dimension in summarizing a feature. A second dimension, variability, also referred to

as dispersion, measures whether the data values are tightly clustered or spread out. At the heart of statistics

lies variability: measuring it, reducing it, distinguishing random from real variability, identifying the

various sources of real variability, and making decisions in the presence of it.

Key Terms for Variability Metrics

Deviations

The difference between the observed values and the estimate of location.

Synonyms

errors, residuals

Variance

The sum of squared deviations from the mean divided by n – 1 where n is the number of data

values.

Synonyms



mean-squared-error

Standard deviation

The square root of the variance.

Synonyms

l2-norm, Euclidean norm

Mean absolute deviation

The mean of the absolute value of the deviations from the mean.

Synonyms

l1-norm, Manhattan norm

Median absolute deviation from
the

median

The median of the absolute value of the deviations from the median.

Range

The
difference between the largest

and
the smallest value in a data set.

Order statistics

Metrics based
on the

data values sorted
from

smallest to biggest.

Synonyms

ranks

Percentile

The value such that P percent of the values take on this value or less and (100–P) percent take on

this value or more.

Synonyms

quantile

Interquartile range

The
difference between the

75th
percentile

and
the 25th percentile.

Synonyms

IQR

Just as there are different ways to measure location (mean, median, etc.) there are also different ways to

measure variability.

Standard Deviation and Related Estimates

The most widely used estimates of variation are based on the differences, or deviations, between the

estimate of location and the observed data. For a set of data {1, 4,4}, the mean is 3 and the median is 4.

The deviations from the mean are the differences: 1 – 3 = –2, 4–3 = 1, 4–3 = 1. These deviations tell us



how dispersed the data is around the central value.

One way
to measure variability is to estimate a typical value

for
these deviations. Averaging the deviations

themselves
would not

tell
us

much—the negative deviations offset the positive ones.
In

fact, the
sum of

the

deviations from the mean is precisely
zero.

Instead, a simple approach
is to

take the average
of the

absolute

values of the deviations from the mean. In the preceding example, the absolute value of the deviations is

{211} and their average is (2 + 1 + 1)/3 = 1.33. This is known as the mean absolute deviation and is

computed with the formula:

iswhere the sample mean.

The best-known estimates for variability are the variance and the standard deviation, which are based on

squared deviations. The variance is an average of the squared deviations, and the standard deviation is the

square root
of the

variance.

The standard deviation is much easier to interpret than the variance since it is on the same scale as the

original data. Still, with its more complicated and less intuitive formula, it might seem peculiar that the

standard deviation is preferred in statistics over the mean absolute deviation. It owes its preeminence to

statistical theory: mathematically, working with squared values is much more convenient than absolute

values, especially for statistical models.



Degrees of Freedom, and n or n – 1?

In statistics books, there is always some discussion of why we have n – 1 in the denominator in the

variance formula, instead of n, leading into the concept of degrees of freedom. This distinction is not

important since n is generally large enough that it won’t make much difference whether you divide by

n or n – 1. But in case you are interested, here is the story. It is based on the premise that you want to

make estimates about a population, based on a sample.

If you use the intuitive denominator of n in the variance formula, you will underestimate the true

value of the variance and the standard deviation in the population. This is referred to as a biased

estimate. However, if you divide by n – 1 instead of n, the standard deviation becomes an unbiased

estimate.

To fully explain why using n leads to a biased estimate involves the notion of degrees of freedom,

which takes into account the number of constraints in computing an estimate. In this case, there are n

– 1 degrees of freedom since there is one constraint: the standard deviation depends on calculating the

sample mean. For many problems, data scientists do not need to worry about degrees of freedom, but

there are cases where the concept is important (see “Choosing K”).

Neither the variance, the standard deviation, nor the mean absolute deviation is robust to outliers and

extreme values (see “Median and Robust Estimates” for a discussion of robust estimates for location). The

variance and standard deviation are especially sensitive to outliers since they are based on the squared

deviations.

A robust estimate of variability is the median absolute deviation from the median or MAD:

where m is the median. Like the median, the MAD is not influenced by extreme values. It is also possible

to compute a trimmed standard deviation analogous to the trimmed mean (see “Mean”).

Note

The variance, the standard deviation, mean absolute deviation, and median absolute deviation from the

median are not equivalent estimates, even in the case where the data comes from a normal distribution. In

fact, the standard deviation is always greater than the mean absolute deviation, which itself is greater than

the median absolute deviation. Sometimes, the median absolute deviation is multiplied by a constant

scaling factor (it happens to work out to 1.4826) to put MAD on the same scale as the standard deviation in

the case of a normal distribution.

Estimates Based on Percentiles

A different approach to estimating dispersion is based on looking at the spread of the sorted data. Statistics

based on sorted (ranked) data are referred to as order statistics. The most basic measure is the range: the

difference between the largest and smallest number. The minimum and maximum values themselves are

useful to know, and helpful in identifying outliers, but the range is extremely sensitive to outliers and not

very useful as a general measure of dispersion in the data.

To avoid the sensitivity to outliers, we can look at the range of the data after dropping values from each

end. Formally, these types of estimates are based on differences between percentiles. In a data set, the Pth

percentile is a value such that at least P percent of the values take on this value or less and at least (100–



P) percent of the values take on this value or more. For example, to find the 80th percentile, sort the data.

Then, starting with the smallest value, proceed 80 percent of the way to the largest value. Note that the

median is the same thing as the 50th percentile. The percentile is essentially the same as a quantile, with

quantiles indexed by fractions (so the .8 quantile is the same as the 80th percentile).

A common measurement of variability is the difference between the 25th percentile and the 75th

percentile, called the interquartile range (or IQR). Here is a simple example: 3,1,5,3,6,7,2,9. We sort these

to get 1,2,3,3,5,6,7,9. The 25th percentile is at 2.5, and the 75th percentile is at 6.5, so the interquartile

range is 6.5 – 2.5 = 4. Software can have slightly differing approaches that yield different answers (see the

following note); typically, these differences are smaller.

For very large data sets, calculating exact percentiles can be computationally very expensive since it

requires sorting all the data values. Machine learning and statistical software use special algorithms, such

as [Zhang-Wang-2007], to get an approximate percentile that can be calculated very quickly and is

guaranteed to have a certain accuracy.

Percentile: Precise Definition

If we have an even number of data (n is even), then the percentile is ambiguous under the preceding

definition. In fact, we could take on any value between the order statistics where j

satisfies:

and

Formally, the percentile is the weighted average:

for some weight w between 0 and 1. Statistical software has slightly differing approaches to choosing w. In

fact, the R function quantile offers nine different alternatives to compute the quantile. Except for small

data sets, you don’t usually need to worry about the precise way a percentile is calculated.

Example: Variability Estimates of State Population

Table
1-3

(repeated from
Table

1-2, earlier, for convenience) shows the first few
rows in

the data
set

containing population and murder rates for each state.



Table 1-3. A few rows of the

data.frame state of population and

murder rate by state

State Population Murder rate

1 Alabama 4,779,736 5.7

2 Alaska 710,231 5.6

3 Arizona 6,392,017 4.7

4 Arkansas 2,915,918 5.6

5 California 37,253,956 4.4

6 Colorado 5,029,196 2.8

7 Connecticut 3,574,097 2.4

8 Delaware 897,934 5.8

Using R’s built-in functions for the standard deviation, interquartile range (IQR), and the median

absolution deviation from the median (MAD), we can compute estimates of variability for the state

population data:

> sd(state[["Population"]])

[1] 6848235

> IQR(state[["Population"]])

[1] 4847308

> mad(state[["Population"]])

[1] 3849870

The standard deviation is almost twice as large as the MAD (in R, by default, the scale of the MAD is

adjusted to be on the same scale as the mean). This is not surprising since the standard deviation is

sensitive to outliers.

Key Ideas

The variance and standard deviation are the most widespread and routinely reported statistics of

variability.

Both are sensitive to outliers.

More robust metrics include mean and median absolute deviations from the mean and percentiles

(quantiles).

Further Reading



1. David Lane’s online statistics resource has a section on percentiles.

2. Kevin Davenport has a useful post on deviations from the median, and their robust properties in R

Bloggers.

Exploring the Data Distribution

Each of the estimates we’ve covered sums up the data in a single number to describe the location or

variability of the data. It is also useful to explore how the data is distributed overall.

Key Terms for Exploring the Distribution

Boxplot

A plot introduced by Tukey as a quick way to visualize the distribution of data.

Synonyms

Box and whiskers plot

Frequency table

A tally of the count of numeric data values that fall into a set of intervals (bins).

Histogram

A plot of the frequency table with the bins on the x-axis and the count (or proportion) on the y

axis.

Density plot

A smoothed version of the histogram, often based on a kernal density estimate.

Percentiles and Boxplots

In “Estimates Based on Percentiles”, we explored how percentiles can be used to measure the spread of the

data. Percentiles are also valuable to summarize the entire distribution. It is common to report the quartiles

(25th,
50th,

and 75th percentiles)
and the

deciles (the 10th, 20th,
…,

90th percentiles). Percentiles
are

especially valuable to summarize
the

tails (the outer range)
of the

distribution.
Popular

culture
has

coined

the term one-percenters to refer to the people in the top 99th percentile of wealth.

Table 1-4 displays some percentiles of the murder rate by state. In R, this would be produced by the

quantile function:

quantile(state[["Murder.Rate"]], p=c(.05, .25, .5, .75, .95))

5% 25% 50% 75% 95%

1.600 2.425 4.000 5.550 6.510



Table 1-4. Percentiles

of murder rate by state

5% 25% 50% 75% 95%

1.60 2.42 4.00 5.55 6.51

The median is 4 murders per 100,000 people, although there is quite a bit of variability: the 5th percentile

is only 1.6 and the 95th percentile is 6.51.

Boxplots, introduced by Tukey [Tukey-1977], are based on percentiles and give a quick way to visualize

the distribution of data. Figure 1-2 shows a boxplot of the population by state produced by R:

boxplot(state[["Population"]]/1000000, ylab="Population (millions)")



Figure 1-2. Boxplot of state populations

The top and bottom of the box are the 75th and 25th percentiles, respectively. The median is shown by the

horizontal line in the box. The dashed lines, referred to as whiskers, extend from the top and bottom to

indicate the range for the bulk of the data. There are many variations of a boxplot; see, for example, the

documentation for the R function boxplot [R-base-2015]. By default, the R function extends the whiskers

to the furthest point beyond the box, except that it will not go beyond 1.5 times the IQR (other software

may use a different rule). Any data outside of the whiskers is plotted as single points.

Frequency Table and Histograms

A frequency table of a variable divides up the variable range into equally spaced segments, and tells us



how many values fall in each
segment.

Table
1-5 shows

a frequency table
of the

population
by

state

computed in R:

breaks <- seq(from=min(state[["Population"]]),

to=max(state[["Population"]]), length=11)

pop_freq <- cut(state[["Population"]], breaks=breaks,

right=TRUE, include.lowest = TRUE)

table(pop_freq)

Table 1-5. A frequency table of population by state

BinNumber BinRange Count States

1 563,626–4,232,658 24 WY,VT,ND,AK,SD,DE,MT,RI,NH,ME,HI,ID,NE,WV,NM,NV,UT,KS,AR,MS,IA,CT,OK,OR2 4,232,659–7,901,691 14 KY,LA,SC,AL,CO,MN,WI,MD,MO,TN,AZ,IN,MA,WA

3 7,901,692–

11,570,724 6 VA,NJ,NC,GA,MI,OH

4 11,570,725–

15,239,757 2 PA,IL

5 15,239,758–

18,908,790 1 FL

6 18,908,791–

22,577,823 1 NY

7 22,577,824–

26,246,856 1 TX

8 26,246,857–

29,915,889 0

9 29,915,890–

33,584,922
0

10 33,584,923–

37,253,956 1 CA

The least populous state is Wyoming, with 563,626 people (2010 Census) and the most populous is

California, with 37,253,956 people. This gives us a range of 37,253,956–563,626 = 36,690,330, which

we must divide up into equal size bins—let’s say 10 bins. With 10 equal size bins, each bin will have a

width of 3,669,033, so the first bin will span from 563,626 to 4,232,658. By contrast, the top bin,

33,584,923 to 37,253,956, has only one state: California. The two bins immediately below California are

empty, until we reach Texas. It is important to include the empty bins; the fact that there are no values in

those bins is useful information. It can also be useful to experiment with different bin sizes. If they are too

large, important features
of

the distribution can be obscured.
It

they
are too

small, the result
is

too granular



and the ability to see bigger pictures is lost.

Note

Both frequency tables and percentiles summarize the data by creating bins. In general, quartiles and deciles

will have the same count in each bin (equal-count bins), but the bin sizes will be different. The frequency

table, by contrast, will have different counts in the bins (equal-size bins).

Figure 1-3. Histogram of state populations

A histogram is a way to visualize a frequency table, with bins on the x-axis and data count on the y-axis.

To create a histogram corresponding to Table 1-5 in R, use the hist function with the breaks argument:

hist(state[["Population"]], breaks=breaks)

The histogram is shown in Figure 1-3. In general, histograms are plotted such that:

Empty bins are included in the graph.

Bins are equal width.



Number of bins (or, equivalently, bin size) is up to the user.

Bars are contiguous—no empty space shows between bars, unless there is an empty bin.

Statistical Moments

In statistical theory, location and variability are referred to as the first and second moments of a

distribution. The third and fourth moments are called skewness and kurtosis. Skewness refers to whether

the data is skewed to larger or smaller values and kurtosis indicates the propensity of the data to have

extreme values. Generally, metrics are not used to measure skewness and kurtosis; instead, these are

discovered through visual displays such as Figures 1-2 and 1-3.

Density Estimates

Related to the histogram is a density plot, which shows the distribution of data values as a continuous line.

A density plot
can be

thought
of

as a smoothed histogram, although it
is

typically computed directly from

the data through a kernal density estimate (see [Duong-2001] for a short tutorial). Figure 1-4 displays a

density estimate superposed on a histogram. In R, you can compute a density estimate using the density

function:

hist(state[["Murder.Rate"]], freq=FALSE)

lines(density(state[["Murder.Rate"]]), lwd=3, col="blue")

A key distinction from the histogram plotted in Figure 1-3 is the scale of the y-axis: a density plot

corresponds to plotting the histogram as a proportion rather than counts (you specify this in R using the

argument freq=FALSE).

Density Estimation

Density estimation is a rich topic with a long history in statistical literature. In fact, over 20 R packages

have been published that offer functions for density estimation. [Deng-Wickham-2011] give a

comprehesive review of R packages, with a particular recommendation for ASH or KernSmooth. For many

data science problems, there is no need to worry about the various types of density estimates; it suffices to

use the base functions.



Figure 1-4. Density of state murder rates

Key Ideas

A frequency histogram plots frequency counts on the y-axis and variable values on the x-axis; it

gives a sense of the distribution of the data at a glance.

A frequency table is a tabular version of the frequency counts found in a histogram.

A boxplot—with the top and bottom of the box at the 75th and 25th percentiles, respectively—also

gives a quick sense of the distribution of the data; it is often used in side-by-side displays to

compare distributions.

A density plot is a smoothed version of a histogram; it requires a function to estimate a plot based

on the data (multiple estimates are possible, of course).

Further Reading

A
SUNY

Oswego professor provides a step-by-step
guide

to creating a boxplot.



Density estimation in R is covered in Henry Deng and Hadley Wickham’s paper of the same name.

R-Bloggers has a useful post
on

histograms
in R,

including customization elements, such
as

binning

(breaks)

R-Bloggers also has similar post on boxplots in R.

Exploring Binary and Categorical Data

For categorical data, simple proportions or percentages tell the story of the data.

Key Terms for Exploring Categorical Data

Mode

The most commonly occurring category or value in a data set.

Expected value

When the categories can be associated with a numeric value, this gives an average value based on

a category’s probability of occurrence.

Bar charts

The frequency or proportion for each category plotted as bars.

Pie charts

The frequency or proportion for each category plotted as wedges in a pie.

Getting a summary
of

a binary variable
or

a categorical variable with a few categories is a fairly
easy

matter: we just figure out the proportion of 1s, or of the important categories. For example, Table 1-6

shows the percentage of delayed flights by the cause of delay at Dallas/Fort Worth airport since 2010.

Delays are categorized as being due to factors under carrier control, air traffic control (ATC) system

delays, weather, security, or a late inbound aircraft.

Table 1-6. Percentage of delays by

cause at Dallas-Fort Worth

airport

Carrier ATC Weather Security Inbound

23.02 30.40 4.03 0.12 42.43

Bar charts are a common visual tool for displaying a single categorical variable, often seen in the popular

press. Categories are listed on the x-axis, and frequencies or proportions on the y-axis. Figure 1-5 shows

the airport delays per year by cause for Dallas/Fort Worth, and it is produced with the R function barplot:

barplot(as.matrix(dfw)/6, cex.axis=.5)



Figure
1-5. Bar plot airline delays at

DFW
by cause

Note that a bar chart resembles a histogram; in a bar chart the x-axis represents different categories of a

factor variable, while in a histogram the x-axis represents values of a single variable on a numeric scale. In

a histogram, the bars are typically shown touching each other, with gaps indicating values that did not

occur in the data. In a bar chart, the bars are shown separate from one another.

Pie charts are an alternative to bar charts, although statisticians and data visualization experts generally

eschew pie charts as less visually informative (see [Few-2007]).

Numerical Data as Categorical Data

In “Frequency Table and Histograms”, we looked at frequency tables based on binning the data. This

implicitly converts the numeric data to an ordered factor. In this sense, histograms and bar charts are

similar, except that the categories on the x-axis in the bar chart are not ordered. Converting numeric data to

categorical data is an important and widely used step in data analysis since it reduces the complexity (and

size) of the data. This aids in the discovery of relationships between features, particularly at the initial

stages of an analysis.



Mode

The mode is the value—or values in case of a tie—that appears most often in the data. For example, the

mode of
the cause

of
delay at Dallas/Fort Worth airport is “Inbound.”

As
another

example,
in

most
parts

of

the United States, the mode for religious preference would be Christian. The mode is a simple summary

statistic for categorical data, and it is generally not used for numeric data.

Expected Value

A special type of categorical data is data in which the categories represent or can be mapped to discrete

values on the same scale. A marketer for a new cloud technology, for example, offers two levels of service,

one priced at $300/month and another at $50/month. The marketer offers free webinars to generate leads,

and the firm figures that 5% of the attendees will sign up for the $300 service, 15% for the $50 service,

and 80% will not sign up for anything. This data can be summed up, for financial purposes, in a single

“expected value,” which is a form of weighted mean in which the weights are probabilities.

The expected value is calculated as follows:

1. Multiply each outcome by its probability of occurring.

2. Sum these values.

In the cloud service example, the expected value of a webinar attendee is thus $22.50 per month,

calculated as follows:

The expected value is really a form of weighted mean: it adds the ideas of future expectations and

probability weights, often based on subjective judgment. Expected value is a fundamental concept in

business valuation and capital budgeting—for example, the expected value of five years of profits from a

new acquisition, or the expected cost savings from new patient management software at a clinic.

Key Ideas

Categorical data is typically summed up in proportions, and can be visualized in a bar chart.

Categories might represent distinct things (apples and oranges, male and female), levels of a factor

variable (low, medium, and high), or numeric data that has been binned.

Expected value is the sum of values times their probability of occurrence, often used to sum up

factor variable levels.

Further Reading

No statistics course is complete without a lesson on misleading graphs, which often involve bar charts and

pie charts.

Correlation

Exploratory data analysis in many modeling projects (whether in data science or in research) involves

examining correlation among predictors, and between predictors and a target variable. Variables X and Y

(each with measured data) are said to be positively correlated if high values of X go with high values of Y,



and low values of X go with low values of Y. If high values of X go with low values of Y, and vice versa,

the variables are negatively correlated.

Key Terms for Correlation

Correlation coefficient

A metric that measures the extent to which numeric variables are associated with one another

(ranges from –1 to +1).

Correlation matrix

A table where the variables are shown on both rows and columns, and the cell values are the

correlations between the variables.

Scatterplot

A plot in which the x-axis is the value of one variable, and the y-axis the value of another.

Consider these two variables, perfectly correlated in the sense that each goes from low to high:

v1: {1, 2, 3}

v2: {4, 5, 6}

The vector sum of products is 4 + 10 + 18 = 32. Now try shuffling one of them and recalculating—the

vector sum of products will never be higher than 32. So this sum of products could be used as a metric;

that is, the observed sum of 32 could be compared to lots of random shufflings (in fact, this idea relates to

a resampling-based estimate:
see

“Permutation Test”). Values produced
by

this metric, though, are
not

that

meaningful, except by reference to the resampling distribution.

More useful is a standardized variant: the correlation coefficient, which gives an estimate of the correlation

between two variables that always lies on the same scale. To compute Pearson’s correlation coefficient,

we multiply deviations from the mean for variable 1 times those for variable 2, and divide by the product

of the standard deviations:

Note that we divide by n – 1 instead of n; see “Degrees of Freedom, and n or n – 1?” for more details. The

correlation coefficient always lies between +1 (perfect positive correlation) and –1 (perfect negative

correlation); 0 indicates no correlation.

Variables can have an association that is not linear, in which case the correlation coefficient may not be a



useful metric. The relationship between tax rates and revenue raised is an example: as tax rates increase

from 0, the revenue raised also increases. However, once tax rates reach a high level and approach 100%,

tax avoidance increases and tax revenue actually declines.

Table 1-7, called a correlation matrix, shows the correlation between the daily returns for

telecommunication stocks from July 2012 through June 2015. From the table, you can see that Verizon

(VZ) and ATT (T) have the highest correlation. Level Three (LVLT), which is an infrastructure company,

has the lowest correlation. Note the diagonal of 1s (the correlation of a stock with itself is 1), and the

redundancy of the information above and below the diagonal.

Table 1-7. Correlation between

telecommunication stock returns

T CTL FTR VZ LVLT

T 1.000 0.475 0.328 0.678 0.279

CTL 0.475 1.000 0.420 0.417 0.287

FTR 0.328 0.420 1.000 0.287 0.260

VZ 0.678 0.417 0.287 1.000 0.242

LVLT 0.279 0.287 0.260 0.242 1.000

A table of correlations like Table 1-7 is commonly plotted to visually display the relationship between

multiple variables. Figure 1-6 shows the correlation between the daily returns for major exchange traded

funds (ETFs). In R, we can easily create this using the package corrplot:

etfs <- sp500_px[row.names(sp500_px)>"2012-07-01",

sp500_sym[sp500_sym$sector=="etf", 'symbol']]

library(corrplot)

corrplot(cor(etfs), method = "ellipse")

The ETFs for the S&P 500 (SPY) and the Dow Jones Index (DIA) have a high correlation. Similary, the

QQQ and the XLK, composed mostly of technology companies, are postively correlated. Defensive ETFs,

such as those tracking gold prices (GLD), oil prices (USO), or market volatility (VXX) tend to be

negatively correlated with the other ETFs. The orientation of the ellipse indicates whether two variables

are positively correlated (ellipse is pointed right) or negatively correlated (ellipse is pointed left). The

shading and width of the ellipse indicate the strength of the association: thinner and darker ellipses

correspond to stronger relationships.

Like the mean and standard deviation, the correlation coefficient is sensitive to outliers in the data.

Software packages offer robust alternatives to the classical correlation coefficient. For example, the R

function cor has a trim argument similar to that for computing a trimmed mean (see [R-base-2015]).



Figure 1-6. Correlation between
ETF

returns

Other Correlation Estimates

Statisticians have long ago proposed other types of correlation coefficients, such as Spearman’s rho or

Kendall’s tau. These are correlation coefficients based on the rank of the data. Since they work with ranks

rather than values, these estimates are robust to outliers and can handle certain types of nonlinearities.

However, data scientists can generally stick to Pearson’s correlation coefficient, and its robust alternatives,

for exploratory analysis. The appeal of rank-based estimates is mostly for smaller data sets and specific

hypothesis tests.

Scatterplots

The standard way to visualize the relationship between two measured data variables is with a scatterplot.

The x-axis represents one variable, the y-axis another, and each point on the graph is a record. See

Figure 1-7 for a plot between the daily returns for ATT and Verizon. This is produced in R with the

command:

plot(telecom$T, telecom$VZ, xlab="T", ylab="VZ")

The returns have a strong positive relationship: on most days, both stocks go up or go down in tandem.

There are very few days where one stock goes down significantly while the other stock goes up (and vice

versa).



Figure 1-7. Scatterplot between returns for ATT and Verizon

Key Ideas for Correlation

The correlation coefficient measures the extent to which two variables are associated with one

another.

When high values of v1 go with high values of v2, v1 and v2 are positively associated.

When high values of v1 are associated with low values of v2, v1 and v2 are negatively associated.

The correlation coefficient is a standardized metric so that it always ranges from –1 (perfect

negative correlation) to +1 (perfect positive correlation).

A correlation coefficient of 0 indicates no correlation, but be aware that random arrangements of

data will produce both positive and negative values for the correlation coefficient just by chance.

Further Reading



Statistics, 4th ed., by David Freedman, Robert Pisani, and Roger Purves (W. W. Norton, 2007), has an

excellent discussion of correlation.

Exploring Two or More Variables

Familiar estimators like mean and variance look at variables one at a time (univariate analysis).

Correlation analysis (see “Correlation”) is an important method that compares two variables (bivariate

analysis). In this section we look at additional estimates and plots, and at more than two variables

(multivariate analysis).

Key Terms for Exploring Two or More Variables

Contingency tables

A tally of counts between two or more categorical variables.

Hexagonal binning

A plot of two numeric variables with the records binned into hexagons.

Contour plots

A plot showing the density of two numeric variables like a topographical map.

Violin plots

Similar to a boxplot but showing the density estimate.

Like univariate analysis, bivariate analysis involves both computing summary statistics and producing

visual displays. The appropriate type of bivariate or multivariate analysis depends on the nature of the

data: numeric versus categorical.

Hexagonal Binning and Contours (Plotting Numeric versus Numeric Data)

Scatterplots are fine when there is a relatively small number of data values. The plot of stock returns in

Figure 1-7 involves only about 750 points. For data sets with hundreds of thousands or millions of records,

a scatterplot will be too dense, so we need a different way to visualize the relationship. To illustrate,

consider the data set kc_tax, which contains the tax-assessed values for residential properties in King

County, Washington. In order to focus on the main part of the data, we strip out very expensive and very

small or large residences using the subset function:

kc_tax0 <- subset(kc_tax, TaxAssessedValue < 750000 & SqFtTotLiving>100 &

SqFtTotLiving<3500)

nrow(kc_tax0)

[1] 432733

Figure 1-8 is a hexagon binning plot of the relationship between the finished square feet versus the tax

assessed value for homes in King County. Rather than plotting points, which would appear as a monolithic

dark cloud, we grouped the records into hexagonal bins and plotted the hexagons with a color indicating

the number of records in that bin. In this chart, the positive relationship between square feet and tax

assessed value is clear. An interesting feature is the hint of a second cloud above the main cloud, indicating

homes that have the same square footage as those in the main cloud, but a higher tax-assessed value.



Figure 1-8 was generated by the powerful R package ggplot2, developed by Hadley Wickham [ggplot2].

ggplot2 is one of several new software libraries for advanced exploratory visual analysis of data; see

“Visualizing Multiple Variables”.

ggplot(kc_tax0, (aes(x=SqFtTotLiving, y=TaxAssessedValue))) +

stat_binhex(colour="white") +

theme_bw() +

scale_fill_gradient(low="white", high="black") +

labs(x="Finished Square Feet", y="Tax Assessed Value")

Figure 1-8. Hexagonal binning for tax-assessed value versus finished square feet

Figure 1-9 uses contours overlaid on a scatterplot to visualize the relationship between two numeric

variables. The contours are essentially a topographical map to two variables; each contour band represents

a specific density of points, increasing as one nears a “peak.” This plot shows a similar story as Figure 1-8:

there is a secondary peak “north” of the main peak. This chart was also created using ggplot2 with the

built-in geom_density2d function.

ggplot(kc_tax0, aes(SqFtTotLiving, TaxAssessedValue)) +



theme_bw() +

geom_point( alpha=0.1) +

geom_density2d(colour="white") +

labs(x="Finished Square Feet", y="Tax Assessed Value")

Figure 1-9. Contour plot for tax-assessed value versus finished square feet

Other types of charts are used to show the relationship between two numeric variables, including heat

maps. Heat maps, hexagonal binning, and contour plots all give a visual representation of a two

dimensional density.
In

this way,
they

are natural analogs
to

histograms and density plots.

Two Categorical Variables

A useful way to summarize
two

categorical variables is a contingency table—a table
of

counts
by

category. Table 1-8 shows the contingency table between the grade of a personal loan and the outcome of

that loan. This is taken from data provided by Lending Club, a leader in the peer-to-peer lending business.

The grade goes from A (high) to G (low). The outcome is either paid off, current, late, or charged off (the

balance of the loan is not expected to be collected). This table shows the count and row percentages. High

grade loans have a very low late/charge-off percentage as compared with lower-grade loans. Contingency

tables can look at just counts, or also include column and total percentages. Pivot tables in Excel are

perhaps the most common tool used to create contingency tables. In R, the CrossTable function in the



descrpackage produces contingency tables, and the following code was used to create Table 1-8:

library(descr)x_tab <- CrossTable(lc_loans$grade, lc_loans$status,

prop.c=FALSE, prop.chisq=FALSE, prop.t=FALSE)

Table 1-8. Contingency table of loan grade and

status

Grade Fully
paid

Current Late Charged off Total

A 20715

0.277

31782

0.232

23773

0.190

14036

0.183

6089

0.170

2376

0.180

655

52058 494

0.695 0.007

97601 2149

0.713 0.016

92444 2895

0.738 0.023

55287 2421

0.719 0.031

25344 1421

0.709 0.040

8675 621

0.656 0.047

2042 206

1588

0.021

5384

0.039

6163

0.049

5131

0.067

2898

0.081

1556

0.118

419

74855

0.161

B 136916

0.294

C 125275

0.269

D 76875

0.165

E 35752

0.077

F 13228

0.028

G 3322

Total

0.197

99426

0.615 0.062

333451 10207

0.126

23139

Categorical and Numeric Data

Boxplots (see “Percentiles and Boxplots”) are a simple way to visually compare the distributions of a

numeric variable grouped according to a categorical variable. For example, we might want to compare

how the percentage of flight delays varies across airlines. Figure 1-10 shows the percentage of flights in a

0.007

466223

month that were delayed where the delay was within the carrier’s control.

boxplot(pct_delay ~ airline, data=airline_stats, ylim=c(0, 50))



Figure 1-10. Boxplot of percent of airline delays by carrier

Alaska stands out as having the fewest delays, while American has the most delays: the lower quartile for

American is higher than the upper quartile for Alaska.

A violin plot, introduced
by

[Hintze-Nelson-1998],
is an

enhancement
to the

boxplot
and

plots
the

density

estimate with the density on the y-axis. The density is mirrored and flipped over and the resulting shape is

filled in, creating an image resembling a violin. The advantage of a violin plot is that it can show nuances

in the distribution that aren’t perceptible in a boxplot. On the other hand, the boxplot more clearly shows

the outliers in the data. In ggplot2, the function geom_violin can be used to create a violin plot as

follows:

ggplot(data=airline_stats, aes(airline, pct_carrier_delay)) +

ylim(0, 50) +

geom_violin() +

labs(x="", y="Daily % of Delayed Flights")

The corresponding plot is shown in Figure 1-11. The violin plot shows a concentration in the distribution

near zero for Alaska, and to a lesser extent, Delta. This phenomenon is not as obvious in the boxplot. You

can combine a violin plot with a boxplot by adding geom_boxplot to the plot (although this is best when

colors are used).



Figure 1-11. Combination of boxplot and violin plot of percent of airline delays by carrier

Visualizing Multiple Variables

The types of charts used to compare two variables—scatterplots, hexagonal binning, and boxplots—are

readily extended to more variables through the notion of conditioning. As an example, look back at

Figure 1-8, which showed the relationship between homes’ finished square feet and tax-assessed values.

We observed that there appears to be a cluster of homes that have higher tax-assessed value per square

foot. Diving deeper, Figure 1-12 accounts for the effect of location by plotting the data for a set of zip

codes. Now the picture is much clearer: tax-assessed value is much higher in some zip codes (98112,

98105) than in others (98108,98057). This disparity gives rise to the clusters observed in Figure 1-8.

We created Figure 1-12 using ggplot2 and the idea of facets, or a conditioning variable (in this case zip

code):

ggplot(subset(kc_tax0, ZipCode %in% c(98188, 98105, 98108, 98126)),

aes(x=SqFtTotLiving, y=TaxAssessedValue)) +

stat_binhex(colour="white") +

theme_bw() +

scale_fill_gradient( low="white", high="blue") +

labs(x="Finished Square Feet", y="Tax Assessed Value") +

facet_wrap("ZipCode")



Figure 1-12. Tax-assessed value versus finished square feet by zip code

The concept of conditioning variables in a graphics system was pioneered with Trellis graphics, developed

by Rick Becker, Bill Cleveland, and others at Bell Labs [Trellis-Graphics]. This idea has propogated to

various modern graphics systems, such as the lattice ([lattice]) and ggplot2 packages in R and the

Seaborn ([seaborne]) and Bokeh ([bokeh]) modules in Python. Conditioning variables are also integral to

business intelligence platforms such as Tableau and Spotfire. With the advent of vast computing power,

modern visualization platforms have moved well beyond the humble beginnings of exploratory data

analysis. However, key concepts and tools developed over the years still form a foundation for these

systems.

Key Ideas

Hexagonal binning
and

contour plots
are

useful tools that
permit

graphical examination
of two

numeric variables at a time, without being overwhelmed by huge amounts of data.

Contingency tables are the standard tool for looking at the counts of two categorical variables.

Boxplots and violin plots allow you to plot a numeric variable against a categorical variable.

Further Reading

Modern Data Science with R, by Benjamin Baumer, Daniel Kaplan, and Nicholas Horton (CRC Press,

2017), has an excellent presentation of “a grammar for graphics” (the “gg” in ggplot).



Ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham, is an excellent resource from the

creator of ggplot2 (Springer, 2009).

Josef Fruehwald has a web-based tutorial on ggplot2.

Summary

With the development of exploratory data analysis (EDA), pioneered by John Tukey, statistics set a

foundation that was a precursor to the field of data science. The key idea of EDA is that the first and most

important step in any project based on data is to look at the data. By summarizing and visualizing the data,

you can gain valuable intuition and understanding of the project.

This chapter has reviewed concepts ranging from simple metrics, such as estimates of location and

variability, to rich visual displays to explore the relationships between multiple variables, as in Figure 1

12. The diverse set of tools and techniques being developed by the open source community, combined with

the expressiveness of the R and Python languages, has created a plethora of ways to explore and analyze

data. Exploratory analysis should be a cornerstone of any data science project.



Chapter 2. Data and Sampling Distributions

A popular misconception holds that the era of big data means the end of a

need for sampling. In fact, the proliferation of data of varying quality and

relevance reinforces the need for sampling as a tool to work efficiently with

a variety of data and to minimize bias. Even in a big data project, predictive

models are typically developed and piloted with samples. Samples are also

used in tests of various sorts (e.g., pricing, web treatments).

Figure 2-1 shows a schematic that underpins the concepts in this chapter.

The lefthand side represents a population that, in statistics, is assumed to

follow an underlying but unknown distribution. The only thing available is

the sample data and its empirical distribution, shown on the righthand side.

To get from the lefthand side to the righthand side, a sampling procedure is

used (represented by dashed arrows). Traditional statistics focused very

much on the lefthand side, using theory based on strong assumptions about

the population. Modern statistics has moved to the righthand side, where

such assumptions are not needed.



Figure 2-1. Population versus sample

In general, data scientists need not worry about the theoretical nature of the

lefthand side, and instead should focus on the sampling procedures and the

data at hand. There are some notable exceptions. Sometimes data is

generated from a physical process that can be modeled. The simplest

example is flipping a coin: this follows a binomial distribution. Any real

life binomial situation (buy or don’t buy, fraud or no fraud, click or don’t

click) can be modeled effectively by a coin (with modified probability of

landing heads, of course). In these cases, we can gain additional insight by

using our understanding of the population.

Random Sampling and Sample Bias



A sample is a subset of data from a larger data set; statisticians call this

larger data set the population. A population in statistics is not the same

thing as in biology—it is a large, defined but sometimes theoretical or

imaginary, set of data.

Key Terms for Random Sampling

Sample

A subset from a larger data set.

Population

The larger data set or idea of a data set.

N (n)

The size of the population (sample).

Random sampling

Drawing elements into a sample at random.

Stratified sampling

Dividing the population into strata and randomly sampling from

each strata.

Simple random sample

The sample that results from random sampling without stratifying

the population.

Sample bias

A sample that misrepresents the population.

Random sampling is a process in which each available member of the



population being sampled has an equal chance of being chosen for the

sample at each draw. The sample that results is called a simple random

sample. Sampling can be done with replacement, in which observations are

put back in the population after each draw for possible future reselection.

Or it can be done without replacement, in which case observations, once

selected, are unavailable for future draws.

Data quality often matters more than data quantity when making an

estimate or a model based on a sample. Data quality in data science

involves completeness, consistency of format, cleanliness, and accuracy of

individual data points. Statistics adds the notion of representativeness.

The classic example is the Literary Digest poll of 1936 that predicted a

victory of Al Landon against Franklin Roosevelt. The Literary Digest, a

leading periodical of the day, polled its entire subscriber base, plus

additional lists of individuals, a total of over 10 million, and predicted a

landslide victory for Landon. George Gallup, founder of the Gallup Poll,

conducted biweekly polls of just 2,000, and accurately predicted a

Roosevelt victory. The difference lay in the selection of those polled.

The Literary Digest opted for quantity, paying little attention to the method

of selection. They ended up polling those with relatively high

socioeconomic status (their own subscribers, plus those who, by virtue of

owning luxuries like telephones and automobiles, appeared in marketers’

lists). The result was sample bias; that is, the sample was different in some

meaningful nonrandom way from the larger population it was meant to

represent. The term nonrandom is important—hardly any sample, including

random samples, will be exactly representative of the population. Sample

bias occurs when the difference is meaningful, and can be expected to

continue for other samples drawn in the same way as the first.

Self-Selection Sampling Bias

The reviews of restaurants, hotels, cafes, and so on that you read on social

media sites like Yelp are prone to bias because the people submitting them



are not randomly selected; rather, they themselves have taken the initiative

to write. This leads to self-selection bias—the people motivated to write

reviews may be those who had poor experiences, may have an association

with the establishment, or may simply be a different type of person from

those who do not write reviews. Note that while self-selection samples can

be unreliable indicators of the true state of affairs, they may be more

reliable in simply comparing one establishment to a similar one; the same

self-selection bias might apply to each.

Bias

Statistical bias refers to measurement or sampling errors that are systematic

and produced by the measurement or sampling process. An important

distinction should be made between errors due to random chance, and

errors due to bias. Consider the physical process of a gun shooting at a

target. It will not hit the absolute center of the target every time, or even

much at all. An unbiased process will produce error, but it is random and

does not tend strongly in any direction (see Figure 2-2). The results shown

in Figure 2-3 show a biased process—there is still random error in both the

x and y direction, but there is also a bias. Shots tend to fall in the upper

right quadrant.



Figure 2-2. Scatterplot of shots from a gun with true aim



Figure 2-3. Scatterplot of shots from a gun with biased aim

Bias comes in different forms, and may be observable or invisible. When a

result does suggest bias (e.g., by reference to a benchmark or actual values),

it is often an indicator that a statistical or machine learning model has been

misspecified, or an important variable left out.

Random Selection

To avoid the problem of sample bias that led the Literary Digest to predict

Landon over Roosevelt, George Gallup (shown in Figure 2-4) opted for

more scientifically chosen methods to achieve a sample that was

representative of the US voter. There are now a variety of methods to

achieve representativeness, but at the heart of all of them lies random

sampling.



Figure 2-4. George Gallup, catapulted to fame by the Literary Digest’s “big data”

failure

Random sampling is not always easy. Proper definition of an accessible

population is key. Suppose we want to generate a representative profile of

customers and we need to conduct a pilot customer survey. The survey

needs to be representative but is labor intensive.

First we need to define who a customer is. We might select all customer

records where purchase amount > 0. Do we include all past customers? Do

we include refunds? Internal test purchases? Resellers? Both billing agent

and customer?

Next we need to specify a sampling procedure. It might be “select 100

customers at random.” Where a sampling from a flow is involved (e.g.,

real-time customer transactions or web visitors), timing considerations may

be important (e.g., a web visitor at 10 a.m. on a weekday may be different

from a web visitor at 10 p.m. on a weekend).

In stratified sampling, the population is divided up into strata, and random

samples are taken from each stratum. Political pollsters might seek to learn

the electoral preferences of whites, blacks, and Hispanics. A simple random



sample taken from the population would yield too few blacks and

Hispanics, so those strata could be overweighted in stratified sampling to

yield equivalent sample sizes.

Size versus Quality: When Does Size Matter?

In the era of big data, it is sometimes surprising that smaller is better. Time

and effort spent on random sampling not only reduce bias, but also allow

greater attention to data exploration and data quality. For example, missing

data and outliers may contain useful information. It might be prohibitively

expensive to track down missing values or evaluate outliers in millions of

records, but doing so in a sample of several thousand records may be

feasible. Data plotting and manual inspection bog down if there is too much

data.

So when are massive amounts of data needed?

The classic scenario for the value of big data is when the data is not only

big, but sparse as well. Consider the search queries received by Google,

where columns are terms, rows are individual search queries, and cell

values are either 0 or 1, depending on whether a query contains a term. The

goal is to determine the best predicted search destination for a given query.

There are over 150,000 words in the English language, and Google

processes over 1 trillion queries per year. This yields a huge matrix, the

vast majority of whose entries are “0.”

This is a true big data problem—only when such enormous quantities of

data are accumulated can effective search results be returned for most

queries. And the more data accumulates, the better the results. For popular

search terms this is not such a problem—effective data can be found fairly

quickly for the handful of extremely popular topics trending at a particular

time. The real value of modern search technology lies in the ability to

return detailed and useful results for a huge variety of search queries,

including those that occur only with a frequency, say, of one in a million.



Consider the search phrase “Ricky Ricardo and Little Red Riding Hood.” In

the early days of the internet, this query would probably have returned

results on Ricky Ricardo the band leader, the television show I Love Lucy

in which he starred, and the children’s story Little Red Riding Hood. Later,

now that trillions of search queries have been accumulated, this search

query returns the exact I Love Lucy episode in which Ricky narrates, in

dramatic fashion, the Little Red Riding Hood story to his infant son in a

comic mix of English and Spanish.

Keep in mind that the number of actual pertinent records—ones in which

this exact search query, or something very similar, appears (together with

information on what link people ultimately clicked on)—might need only

be in the thousands to be effective. However, many trillions of data points

are needed in order to obtain these pertinent records (and random sampling,

of course, will not help). See also “Long-Tailed Distributions”.

Sample Mean versus Population Mean

The symbol (pronounced x-bar) is used to represent the mean of a

sample from a population, whereas is used to represent the mean of a

population. Why make the distinction? Information about samples is

observed, and information about large populations is often inferred from

smaller samples. Statisticians like to keep the two things separate in the

symbology.



Key Ideas

Even in the era of big data, random sampling remains an important

arrow in the data scientist’s quiver.

Bias occurs when measurements or observations are systematically

in error because they are not representative of the full population.

Data quality is often more important than data quantity, and

random sampling can reduce bias and facilitate quality

improvement that would be prohibitively expensive.

Further Reading

A useful review of sampling procedures can be found in Ronald

Fricker’s chapter “Sampling Methods for Web and E-mail Surveys,”

found in the Sage Handbook of Online Research Methods. This chapter

includes a review of the modifications to random sampling that are often

used for practical reasons of cost or feasibility.

The story of the Literary Digest poll failure can be found on the Capital

Century website.

Selection Bias

To paraphrase Yogi Berra, “If you don’t know what you’re looking for,

look hard enough and you’ll find it.”

Selection bias refers to the practice of selectively choosing data—

consciously or unconsciously—in a way that that leads to a conclusion that

is misleading or ephemeral.



Key Terms

Bias

Systematic error.

Data snooping

Extensive hunting through data in search of something interesting.

Vast search effect

Bias or nonreproducibility resulting from repeated data modeling,

or modeling data with large numbers of predictor variables.

If you specify a hypothesis and conduct a well-designed experiment to test

it, you can have high confidence in the conclusion. Such is often not the

case, however. Often, one looks at available data and tries to discern

patterns. But is the pattern for real, or just the product of data snooping—

that is, extensive hunting through the data until something interesting

emerges? There is a saying among statisticians: “If you torture the data long

enough, sooner or later it will confess.”

The difference between a phenomenon that you verify when you test a

hypothesis using an experiment, versus a phenomenon that you discover by

perusing available data, can be illuminated with the following thought

experiment.

Imagine that someone tells you she can flip a coin and have it land heads on

the next 10 tosses. You challenge her (the equivalent of an experiment), and

she proceeds to toss it 10 times, all landing heads. Clearly you ascribe some

special talent to her—the probability that 10 coin tosses will land heads just

by chance is 1 in 1,000.

Now imagine that the announcer at a sports stadium asks the 20,000 people



in attendance each to toss a coin 10 times, and report to an usher if they get

10 heads in a row. The chance that somebody in the stadium will get 10

heads is extremely high (more than 99%—it’s 1 minus the probability that

nobody gets 10 heads). Clearly, selecting, after the fact, the person (or

persons) who gets 10 heads at the stadium does not indicate they have any

special talent—it’s most likely luck.

Since repeated review of large data sets is a key value proposition in data

science, selection bias is something to worry about. A form of selection

bias of particular concern to data scientists is what John Elder (founder of

Elder Research, a respected data mining consultancy) calls the vast search

effect. If you repeatedly run different models and ask different questions

with a large data set, you are bound to find something interesting. Is the

result you found truly something interesting, or is it the chance outlier?

We can guard against this by using a holdout set, and sometimes more than

one holdout set, against which to validate performance. Elder also

advocates the use of what he calls target shuffling (a permutation test, in

essence) to test the validity of predictive associations that a data mining

model suggests.

Typical forms of selection bias in statistics, in addition to the vast search

effect, include nonrandom sampling (see sampling bias), cherry-picking

data, selection of time intervals that accentuate a partiular statistical effect,

and stopping an experiment when the results look “interesting.”

Regression to the Mean

Regression to the mean refers to a phenomenon involving successive

measurements on a given variable: extreme observations tend to be

followed by more central ones. Attaching special focus and meaning to the

extreme value can lead to a form of selection bias.

Sports fans are familiar with the “rookie of the year, sophomore slump”

phenomenon. Among the athletes who begin their career in a given season



(the rookie class), there is always one who performs better than all the rest.

Generally, this “rookie of the year” does not do as well in his second year.

Why not?

In nearly all major sports, at least those played with a ball or puck, there are

two elements that play a role in overall performance:

Skill

Luck

Regression to the mean is a consequence of a particular form of selection

bias. When we select the rookie with the best performance, skill and good

luck are probably contributing. In his next season, the skill will still be

there but, in most cases, the luck will not, so his performance will decline—

it will regress. The phenomenon was first identified by Francis Galton in

1886 [Galton-1886], who wrote of it in connection with genetic tendencies;

for example, the children of extremely tall men tend not to be as tall as their

father (see Figure 2-5).



Figure 2-5. Galton’s study that identified the phenomenon of regression to the mean

Warning

Regression to the mean, meaning to “go back,” is distinct from the

statistical modeling method of linear regression, in which a linear

relationship is estimated between predictor variables and an outcome

variable.



Key Ideas

Specifying a hypothesis, then collecting data following

randomization and random sampling principles, ensures against

bias.

All other forms of data analysis run the risk of bias resulting from

the data collection/analysis process (repeated running of models in

data mining, data snooping in research, and after-the-fact selection

of interesting events).

Further Reading

Christopher J. Pannucci and Edwin G. Wilkins’ article “Identifying and

Avoiding Bias in Research” in (surprisingly) Plastic and Reconstructive

Surgery (August 2010) has an excellent review of various types of bias

that can enter into research, including selection bias.

Michael Harris’s article “Fooled by Randomness Through Selection

Bias” provides an interesting review of selection bias considerations in

stock market trading schemes, from the perspective of traders.

Sampling Distribution of a Statistic

The term sampling distribution of a statistic refers to the distribution of

some sample statistic, over many samples drawn from the same population.

Much of classical statistics is concerned with making inferences from

(small) samples to (very large) populations.



Key Terms

Sample statistic

A metric calculated for a sample of data drawn from a larger

population.

Data distribution

The frequency distribution of individual values in a data set.

Sampling distribution

The frequency distribution of a sample statistic over many samples

or resamples.

Central limit theorem

The tendency of the sampling distribution to take on a normal

shape as sample size rises.

Standard error

The variability (standard deviation) of a sample statistic over many

samples (not to be confused with standard deviation, which, by

itself, refers to variability of individual data values).

Typically, a sample is drawn with the goal of measuring something (with a

sample statistic) or modeling something (with a statistical or machine

learning model). Since our estimate or model is based on a sample, it might

be in error; it might be different if we were to draw a different sample. We

are therefore interested in how different it might be—a key concern is

sampling variability. If we had lots of data, we could draw additional

samples and observe the distribution of a sample statistic directly.

Typically, we will calculate our estimate or model using as much data as is

easily available, so the option of drawing additional samples from the



population is not readily available.

Warning

It is important to distinguish between the distribution of the individual data

points, known as the data distribution, and the distribution of a sample

statistic, known as the sampling distribution.

The distribution of a sample statistic such as the mean is likely to be more

regular and bell-shaped than the distribution of the data itself. The larger

the sample that the statistic is based on, the more this is true. Also, the

larger the sample, the narrower the distribution of the sample statistic.

This is illustrated in an example using annual income for loan applicants to

Lending Club (see “A Small Example: Predicting Loan Default” for a

description of the data). Take three samples from this data: a sample of

1,000 values, a sample of 1,000 means of 5 values, and a sample of 1,000

means of 20 values. Then plot a histogram of each sample to produce

Figure 2-6.
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Figure 2-6. Histogram of annual incomes of 1,000 loan applicants (top), then 1000

means of n=5 applicants (middle), and n=20 (bottom)

The histogram of the individual data values is broadly spread out and

skewed toward higher values as is to be expected with income data. The

histograms of the means of 5 and 20 are increasingly compact and more

bell-shaped. Here is the R code to generate these histograms, using the

visualization package ggplot2.

library(ggplot2)

samp_data <- data.frame(income=sample(loans_income, 1000),

type='data_dist')

samp_mean_05 <- data.frame(

income = tapply(sample(loans_income, 1000*5),

rep(1:1000, rep(5, 1000)), FUN=mean),

type = 'mean_of_5')

samp_mean_20 <- data.frame(

income = tapply(sample(loans_income, 1000*20),

rep(1:1000, rep(20, 1000)), FUN=mean),

type = 'mean_of_20')

income <- rbind(samp_data, samp_mean_05, samp_mean_20)

income$type = factor(income$type,

levels=c('data_dist', 'mean_of_5',

'mean_of_20'),

labels=c('Data', 'Mean of 5', 'Mean of 20'))

ggplot(income, aes(x=income)) +

geom_histogram(bins=40) +

facet_grid(type ~ .)

Central Limit Theorem

This phenomenon is termed the central limit theorem. It says that the means

drawn from multiple samples will resemble the familiar bell-shaped normal

curve (see “Normal Distribution”), even if the source population is not



normally distributed, provided that the sample size is large enough and the

departure of the data from normality is not too great. The central limit

theorem allows normal-approximation formulas like the t-distribution to be

used in calculating sampling distributions for inference—that is, confidence

intervals and hypothesis tests.

The central limit theorem receives a lot of attention in traditional statistics

texts because it underlies the machinery of hypothesis tests and confidence

intervals, which themselves consume half the space in such texts. Data

scientists should be aware of this role, but, since formal hypothesis tests

and confidence intervals play a small role in data science, and the bootstrap

is available in any case, the central limit theorem is not so central in the

practice of data science.

Standard Error

The standard error is a single metric that sums up the variability in the

sampling distribution for a statistic. The standard error can be estimated

using a statistic based on the standard deviation s of the sample values, and

the sample size n:

As the sample size increases, the standard error decreases, corresponding to

what was observed in Figure 2-6. The relationship between standard error

and sample size is sometimes referred to as the square-root of n rule: in

order to reduce the standard error by a factor of 2, the sample size must be

increased by a factor of 4.

The validity of the standard error formula arises from the central limit

theorem (see “Central Limit Theorem”). In fact, you don’t need to rely on

the central limit theorem to understand standard error. Consider the

following approach to measure standard error:



1. Collect a number of brand new samples from the population.

2. For each new sample, calculate the statistic (e.g., mean).

3. Calculate the standard deviation of the statistics computed in step 2; use

this as your estimate of standard error.

In practice, this approach of collecting new samples to estimate the

standard error is typically not feasible (and statistically very wasteful).

Fortunately, it turns out that it is not necessary to draw brand new samples;

instead, you can use bootstrap resamples (see “The Bootstrap”). In modern

statistics, the bootstrap has become the standard way to to estimate standard

error. It can be used for virtually any statistic and does not rely on the

central limit theorem or other distributional assumptions.

Standard Deviation versus Standard Error

Do not confuse standard deviation (which measures the variability of

individual data points) with standard error (which measures the variability

of a sample metric).

Key Ideas

The frequency distribution of a sample statistic tells us how that

metric would turn out differently from sample to sample.

This sampling distribution can be estimated via the bootstrap, or

via formulas that rely on the central limit theorem.

A key metric that sums up the variability of a sample statistic is its

standard error.

Further Reading

David Lane’s online multimedia resource in statistics has a useful



simulation that allows you to select a sample statistic, a sample size and

number of iterations and visualize a histogram of the resulting frequency

distribution.

The Bootstrap

One easy and effective way to estimate the sampling distribution of a

statistic, or of model parameters, is to draw additional samples, with

replacement, from the sample itself and recalculate the statistic or model for

each resample. This procedure is called the bootstrap, and it does not

necessarily involve any assumptions about the data or the sample statistic

being normally distributed.

Key Terms

Bootstrap sample

A sample taken with replacement from an observed data set.

Resampling

The process of taking repeated samples from observed data;

includes both bootstrap and permutation (shuffling) procedures.

Conceptually, you can imagine the bootstrap as replicating the original

sample thousands or millions of times so that you have a hypothetical

population that embodies all the knowledge from your original sample (it’s

just larger). You can then draw samples from this hypothetical population

for the purpose of estimating a sampling distribution. See Figure 2-7.



Figure 2-7. The idea of the bootstrap

In practice, it is not necessary to actually replicate the sample a huge

number of times. We simply replace each observation after each draw; that

is, we sample with replacement. In this way we effectively create an infinite

population in which the probability of an element being drawn remains

unchanged from draw to draw. The algorithm for a bootstrap resampling of

the mean is as follows, for a sample of size n:

Draw a sample value, record, replace it.

Repeat n times.

1.

2.

3. Record the mean of the n resampled values.

4. Repeat steps 1–3 R times.

5. Use the R results to:

a. Calculate their standard deviation (this estimates sample mean

standard error).

b. Produce a histogram or boxplot.

c. Find a confidence interval.



R, the number of iterations of the bootstrap, is set somewhat arbitrarily. The

more iterations you do, the more accurate the estimate of the standard error,

or the confidence interval. The result from this procedure is a bootstrap set

of sample statistics or estimated model parameters, which you can then

examine to see how variable they are.

The R package boot combines these steps in one function. For example, the

following applies the bootstrap to the incomes of people taking out loans:

library(boot)stat_fun <- function(x, idx) median(x[idx])

boot_obj<- boot(loans_income, R = 1000, statistic=stat_fun)

The function stat_fun computes the median for a given sample specified

by the index idx. The result is as follows:

Bootstrap Statistics :

original bias std. error

t1* 62000 -70.5595 209.1515

The original estimate of the median is $62,000. The bootstrap distribution

indicates that the estimate has a bias of about –$70 and a standard error of

$209.

The bootstrap can be used with multivariate data, where the rows are

sampled as units (see Figure 2-8). A model might then be run on the

bootstrapped data, for example, to estimate the stability (variability) of

model parameters, or to improve predictive power. With classification and

regression trees (also called decision trees), running multiple trees on

bootstrap samples and then averaging their predictions (or, with

classification, taking a majority vote) generally performs better than using a

single tree. This process is called bagging (short for “bootstrap

aggregating”: see “Bagging and the Random Forest”).



Figure 2-8. Multivariate bootstrap sampling

The repeated resampling of the bootstrap is conceptually simple, and Julian

Simon, an economist and demographer, published a compendium of

resampling examples, including the bootstrap, in his 1969 text Basic

Research Methods in Social Science (Random House). However, it is also

computationally intensive, and was not a feasible option before the

widespread availability of computing power. The technique gained its name

and took off with the publication of several journal articles and a book by

Stanford statistician Bradley Efron in the late 1970s and early 1980s. It was

particularly popular among researchers who use statistics but are not

statisticians, and for use with metrics or models where mathematical

approximations are not readily available. The sampling distribution of the

mean has been well established since 1908; the sampling distribution of

many other metrics has not. The bootstrap can be used for sample size

determination; experiment with different values for n to see how the



sampling distribution is affected.

The bootstrap met with considerable skepticism when it was first

introduced; it had the aura to many of spinning gold from straw. This

skepticism stemmed from a misunderstanding of the bootstrap’s purpose.

Warning

The bootstrap does not compensate for a small sample size; it does not

create new data, nor does it fill in holes in an existing data set. It merely

informs us about how lots of additional samples would behave when drawn

from a population like our original sample.

Resampling versus Bootstrapping

Sometimes the term resampling is used synonymously with the term

bootstrapping, as just outlined. More often, the term resampling also

includes permutation procedures (see “Permutation Test”), where multiple

samples are combined and the sampling may be done without replacement.

In any case, the term bootstrap always implies sampling with replacement

from an observed data set.



Key Ideas

The bootstrap (sampling with replacement from a data set) is a

powerful tool for assessing the variability of a sample statistic.

The bootstrap can be applied in similar fashion in a wide variety of

circumstances, without extensive study of mathematical

approximations to sampling distributions.

It also allows us to estimate sampling distributions for statistics

where no mathematical approximation has been developed.

When applied to predictive models, aggregating multiple bootstrap

sample predictions (bagging) outperforms the use of a single

model.

Further Reading

An Introduction to the Bootstrap by Bradley Efron and Robert

Tibshirani (Chapman Hall, 1993) was the first book-length treatment of

the bootstrap. It is still widely read.

The retrospective on the bootstrap in the May 2003 issue of Statistical

Science, (vol. 18, no. 2), discusses (among other antecedents, in Peter

Hall’s “Prehistory”) Julian Simon’s first publication of the bootstrap in

1969.

See An Introduction to Statistical Learning by Gareth James et al.

(Springer, 2013) for sections on the bootstrap and, in particular,

bagging.

Confidence Intervals

Frequency tables, histograms, boxplots, and standard errors are all ways to



understand the potential error in a sample estimate. Confidence intervals

are another.

Key Terms

Confidence level

The percentage of confidence intervals, constructed in the same

way from the same population, expected to contain the statistic of

interest.

Interval endpoints

The top and bottom of the confidence interval.

There is a natural human aversion to uncertainty; people (especially

experts) say, “I don’t know” far too rarely. Analysts and managers, while

acknowledging uncertainty, nonetheless place undue faith in an estimate

when it is presented as a single number (a point estimate). Presenting an

estimate not as a single number but as a range is one way to counteract this

tendency. Confidence intervals do this in a manner grounded in statistical

sampling principles.

Confidence intervals always come with a coverage level, expressed as a

(high) percentage, say 90% or 95%. One way to think of a 90% confidence

interval is as follows: it is the interval that encloses the central 90% of the

bootstrap sampling distribution of a sample statistic (see “The Bootstrap”).

More generally, an x% confidence interval around a sample estimate

should, on average, contain similar sample estimates x% of the time (when

a similar sampling procedure is followed).

Given a sample of size n, and a sample statistic of interest, the algorithm for

a bootstrap confidence interval is as follows:



1. Draw a random sample of size n with replacement from the data (a

resample).

2. Record the statistic of interest for the resample.

3. Repeat steps 1–2 many (R) times.

4. For an x% confidence interval, trim [(1–[x/100])/2]% of the R

resample results from either end of the distribution.

5. The trim points are the endpoints of an x% bootstrap confidence

interval.

Figure 2-9 shows a a 90% confidence interval for the mean annual income

of loan applicants, based on a sample of 20 for which the mean was

$57,573.

Figure 2-9. Bootstrap confidence interval for the annual income of loan applicants,

based on a sample of 20

The bootstrap is a general tool that can be used to generate confidence

intervals for most statistics, or model parameters. Statistical textbooks and

software, with roots in over a half-century of computerless statistical



analysis, will also reference confidence intervals generated by formulas,

especially the t-distribution (see “Student’s t-Distribution”).

Note

Of course, what we are really interested in when we have a sample result is

“what is the probability that the true value lies within a certain interval?”

This is not really the question that a confidence interval answers, but it ends

up being how most people interpret the answer.

The probability question associated with a confidence interval starts out

with the phrase “Given a sampling procedure and a population, what is the

probability that…” To go in the opposite direction, “Given a sample result,

what is the probability that (something is true about the population),”

involves more complex calculations and deeper imponderables.

The percentage associated with the confidence interval is termed the level

of confidence. The higher the level of confidence, the wider the interval.

Also, the smaller the sample, the wider the interval (i.e., the more

uncertainty). Both make sense: the more confident you want to be, and the

less data you have, the wider you must make the confidence interval to be

sufficiently assured of capturing the true value.

Note

For a data scientist, a confidence interval is a tool to get an idea of how

variable a sample result might be. Data scientists would use this

information not to publish a scholarly paper or submit a result to a

regulatory agency (as a researcher might), but most likely to communicate

the potential error in an estimate, and, perhaps, learn whether a larger

sample is needed.



Key Ideas

Confidence intervals are the typical way to present estimates as an

interval range.

The more data you have, the less variable a sample estimate will

be.

The lower the level of confidence you can tolerate, the narrower the

confidence interval will be.

The bootstrap is an effective way to construct confidence intervals.

Further Reading

For a bootstrap approach to confidence intervals, see Introductory

Statistics and Analytics: A Resampling Perspective by Peter Bruce

(Wiley, 2014) or Statistics by Robin Lock and four other Lock family

members (Wiley, 2012).

Engineers, who have a need to understand the precision of their

measurements, use confidence intervals perhaps more than most

disciplines, and Modern Engineering Statistics by Tom Ryan (Wiley,

2007) discusses confidence intervals. It also reviews a tool that is just as

useful and gets less attention: prediction intervals (intervals around a

single value, as opposed to a mean or other summary statistic).

Normal Distribution

The bell-shaped normal distribution is iconic in traditional statistics. The

fact that distributions of sample statistics are often normally shaped has

made it a powerful tool in the development of mathematical formulas that

approximate those distributions.

1



Key Terms

Error

The difference between a data point and a predicted or average

value.

Standardize

Subtract the mean and divide by the standard deviation.

z-score

The result of standardizing an individual data point.

Standard normal

A normal distribution with mean = 0 and standard deviation = 1.

QQ-Plot

A plot to visualize how close a sample distribution is to a normal

distribution.

In a normal distribution (Figure 2-10), 68% of the data lies within one

standard deviation of the mean, and 95% lies within two standard

deviations.

Warning

It is a common misconception that the normal distribution is called that

because most data follows a normal distribution—that is, it is the normal

thing. Most of the variables used in a typical data science project—in fact

most raw data as a whole—are not normally distributed: see “Long-Tailed

Distributions”. The utility of the normal distribution derives from the fact

that many statistics are normally distributed in their sampling distribution.

Even so, assumptions of normality are generally a last resort, used when



empirical probability distributions, or bootstrap distributions, are not

available.

Figure 2-10. Normal curve

Note

The normal distribution is also referred to as a Gaussian distribution after

Carl Friedrich Gauss, a prodigous German mathematician from the late

18th and early 19th century. Another name previously used for the normal

distribution was the “error” distribution. Statistically speaking, an error is

the difference between an actual value and a statistical estimate like the

sample mean. For example, the standard deviation (see “Estimates of

Variability”) is based on the errors from the mean of the data. Gauss’s

development of the normal distribution came from his study of the errors of

astronomical measurements that were found to be normally distributed.



Standard Normal and QQ-Plots

A standard normal distribution is one in which the units on the x-axis are

expressed in terms of standard deviations away from the mean. To compare

data to a standard normal distribution, you subtract the mean then divide by

the standard deviation; this is also called normalization or standardization

(see “Standardization (Normalization, Z-Scores)”). Note that

“standardization” in this sense is unrelated to database record

standardization (conversion to a common format). The transformed value is

termed a z-score, and the normal distribution is sometimes called the z

distribution.

A QQ-Plot is used to visually determine how close a sample is to the

normal distribution. The QQ-Plot orders the z-scores from low to high, and

plots each value’s z-score on the y-axis; the x-axis is the corresponding

quantile of a normal distribution for that value’s rank. Since the data is

normalized, the units correspond to the number of standard deviations away

of the data from the mean. If the points roughly fall on the diagonal line,

then the sample distribution can be considered close to normal. Figure 2-11

shows a QQ-Plot for a sample of 100 values randomly generated from a

normal distribution; as expected, the points closely follow the line. This

figure can be produced in R with the qqnorm function:

norm_samp <- rnorm(100)

qqnorm(norm_samp)

abline(a=0, b=1, col='grey')



Figure 2-11. QQ-Plot of a sample of 100 values drawn from a normal distribution

Warning

Converting data to z-scores (i.e., standardizing or normalizing the data)

does not make the data normally distributed. It just puts the data on the

same scale as the standard normal distribution, often for comparison

purposes.



Key Ideas

The normal distribution was essential to the historical development

of statistics, as it permitted mathematical approximation of

uncertainty and variability.

While raw data is typically not normally distributed, errors often

are, as are averages and totals in large samples.

To convert data to z-scores, you subtract the mean of the data and

divide by the standard deviation; you can then compare the data to

a normal distribution.

Long-Tailed Distributions

Despite the importance of the normal distribution historically in statistics,

and in contrast to what the name would suggest, data is generally not

normally distributed.

Key Terms for Long-Tail Distribution

Tail

The long narrow portion of a frequency distribution, where

relatively extreme values occur at low frequency.

Skew

Where one tail of a distribution is longer than the other.

While the normal distribution is often appropriate and useful with respect to

the distribution of errors and sample statistics, it typically does not

characterize the distribution of raw data. Sometimes, the distribution is



highly skewed (asymmetric), such as with income data, or the distribution

can be discrete, as with binomial data. Both symmetric and asymmetric

distributions may have long tails. The tails of a distribution correspond to

the extreme values (small and large). Long tails, and guarding against them,

are widely recognized in practical work. Nassim Taleb has proposed the

black swan theory, which predicts that anamolous events, such as a stock

market crash, are much more likely to occur than would be predicted by the

normal distribution.

A good example to illustrate the long-tailed nature of data is stock returns.

Figure 2-12 shows the QQ-Plot for the daily stock returns for Netflix

(NFLX). This is generated in R by:

nflx <- sp500_px[,'NFLX']

nflx <- diff(log(nflx[nflx>0]))

qqnorm(nflx)

abline(a=0, b=1, col='grey')



Figure 2-12. QQ-Plot of the returns for NFLX

In contrast to Figure 2-11, the points are far below the line for low values

and far above the line for high values. This means that we are much more

likely to observe extreme values than would be expected if the data had a

normal distribution. Figure 2-12 shows another common phenomena: the

points are close to the line for the data within one standard deviation of the

mean. Tukey refers to this phenomenon as data being “normal in the



middle,” but having much longer tails (see [Tukey-1987]).

Note

There is much statistical literature about the task of fitting statistical

distributions to observed data. Beware an excessively data-centric approach

to this job, which is as much art as science. Data is variable, and often

consistent, on its face, with more than one shape and type of distribution. It

is typically the case that domain and statistical knowledge must be brought

to bear to determine what type of distribution is appropriate to model a

given situation. For example, we might have data on the level of internet

traffic on a server over many consecutive 5-second periods. It is useful to

know that the best distribution to model “events per time period” is the

Poisson (see “Poisson Distributions”).

Key Ideas for Long-Tail Distribution

Most data is not normally distributed.

Assuming a normal distribution can lead to underestimation of

extreme events (“black swans”).

Further Reading

The Black Swan, 2nd ed., by Nassim Taleb (Random House, 2010).

Handbook of Statistical Distributions with Applications, 2nd ed., by K.

Krishnamoorthy (CRC Press, 2016)

Student’s t-Distribution

The t-distribution is a normally shaped distribution, but a bit thicker and

longer on the tails. It is used extensively in depicting distributions of

sample statistics. Distributions of sample means are typically shaped like a



t-distribution, and there is a family of t-distributions that differ depending

on how large the sample is. The larger the sample, the more normally

shaped the t-distribution becomes.

Key Terms for Student’s t-Distribution

n

Sample size.

Degrees of freedom

A parameter that allows the t-distribution to adjust to different

sample sizes, statistics, and number of groups.

The t-distribution is often called Student’s t because it was published in

1908 in Biometrika by W. S. Gossett under the name “Student.” Gossett’s

employer, the Guinness brewery, did not want competitors to know that it

was using statistical methods, so insisted that Gossett not use his name on

the article.

Gossett wanted to answer the question “What is the sampling distribution

of the mean of a sample, drawn from a larger population?” He started out

with a resampling experiment—drawing random samples of 4 from a data

set of 3,000 measurements of criminals’ height and left-middle-finger

lengths. (This being the era of eugenics, there was much interest in data on

criminals, and in discovering correlations between criminal tendencies and

physical or psychological attributes.) He plotted the standardized results

(the z-scores) on the x-axis and the frequency on the y-axis. Separately, he

had derived a function, now known as Student’s t, and he fit this function

over the sample results, plotting the comparison (see Figure 2-13).



Figure 2-13. Gossett’s resampling1908 Biometrikaexperimentpaper)results and fitted t-curve (from his

A number of different statistics can be compared, after standardization, to

the t-distribution, to estimate confidence intervals in light of sampling

variation. Consider a sample of size n for which the sample mean has

been calculated. If s is the sample standard deviation, a 90% confidence

interval around the sample mean is given by:

iswhere the value of the t-statistic, with (n – 1) degrees of

freedom (see “Degrees of Freedom”), that “chops off” 5% of the t

distribution at either end. The t-distribution has been used as a reference for

the distribution of a sample mean, the difference between two sample

means, regression parameters, and other statistics.

Had computing power been widely available in 1908, statistics would no

doubt have relied much more heavily on computationally intensive

resampling methods from the start. Lacking computers, statisticians turned



to mathematics and functions such as the t-distribution to approximate

sampling distributions. Computer power enabled practical resampling

experiments in the 1980s, but by then, use of the t-distribution and similar

distributions had become deeply embedded in textbooks and software.

The t-distribution’s accuracy in depicting the behavior of a sample statistic

requires that the distribution of that statistic for that sample be shaped like a

normal distribution. It turns out that sample statistics are often normally

distributed, even when the underlying population data is not (a fact which

led to widespread application of the t-distribution). This phenomenon is

termed the central limit theorem (see “Central Limit Theorem”).

Note

What do data scientists need to know about the t-distribution and the central

limit theorem? Not a whole lot. These distributions are used in classical

statistical inference, but are not as central to the purposes of data science.

Understanding and quantifying uncertainty and variation are important to

data scientists, but empirical bootstrap sampling can answer most questions

about sampling error. However, data scientists will routinely encounter t

statistics in output from statistical software and statistical procedures in R,

for example in A-B tests and regressions, so familiarity with its purpose is

helpful.

Key Ideas

The t-distribution is actually a family of distributions resembling

the normal distribution, but with thicker tails.

It is widely used as a reference basis for the distribution of sample

means, differerences between two sample means, regression

parameters, and more.



Further Reading

The original Gossett paper in Biometrica from 1908 is available as a

PDF.

A standard treatment of the t-distribution can be found in David Lane’s

online resource.

Binomial Distribution



Key Terms for Binomial Distribution

Trial

An event with a discrete outcome (e.g., a coin flip).

Success

The outcome of interest for a trial.

Synonyms

“1” (as opposed to “0”)

Binomial

Having two outcomes.

Synonyms

yes/no, 0/1, binary

Binomial trial

A trial with two outcomes.

Synonym

Bernoulli trial

Binomial distribution

Distribution of number of successes in x trials.

Synonym

Bernoulli distribution

Yes/no (binomial) outcomes lie at the heart of analytics since they are often

the culmination of a decision or other process; buy/don’t buy, click/don’t



click, survive/die, and so on. Central to understanding the binomial

distribution is the idea of a set of trials, each trial having two possible

outcomes with definite probabilities.

For example, flipping a coin 10 times is a binomial experiment with 10

trials, each trial having two possible outcomes (heads or tails); see

Figure 2-14. Such yes/no or 0/1 outcomes are termed binary outcomes, and

they need not have 50/50 probabilities. Any probabilities that sum to 1.0

are possible. It is conventional in statistics to term the “1” outcome the

success outcome; it is also common practice to assign “1” to the more rare

outcome. Use of the term success does not imply that the outcome is

desirable or beneficial, but it does tend to indicate the outcome of interest.

For example, loan defaults or fraudulent transactions are relatively

uncommon events that we may be interested in predicting, so they are

termed “1s” or “successes.”

Figure 2-14. The tails side of a buffalo nickel

The binomial distribution is the frequency distribution of the number of

successes (x) in a given number of trials (n) with specified probability (p)

of success in each trial. There is a family of binomial distributions,

depending on the values of x, n, and p. The binomial distribution would

answer a question like:

If the probability of a click converting to a sale is 0.02, what is the

probability of observing 0 sales in 200 clicks?



The R function dbinom calculates binomial probabilities. For example:

dbinom(x=2, n=5, p=0.1)

would return 0.0729, the probability of observing exactly x = 2 successes in

n = 5 trials, where the probability of success for each trial is p = 0.1.

Often we are interested in determining the probability of x or fewer

successes in n trials. In this case, we use the function pbinom:

pbinom(2, 5, 0.1)

This would return 0.9914, the probability of observing two or fewer

successes in five trials, where the probability of success for each trial is 0.1.

The mean of a binomial distribution is ; you can also think of this

as the expected number of successes in n trials, for success probability = p.

The variance is . With a large enough number of

trials (particularly when p is close to 0.50), the binomial distribution is

virtually indistinguishable from the normal distribution. In fact, calculating

binomial probabilities with large sample sizes is computationally

demanding, and most statistical procedures use the normal distribution,

with mean and variance, as an approximation.



Key Ideas

Binomial outcomes are important to model, since they represent,

among other things, fundamental decisions (buy or don’t buy, click

or don’t click, survive or die, etc.).

A binomial trial is an experiment with two possible outcomes: one

with probability p and the other with probability 1–p.

With large n, and provided p is not too close to 0 or 1, the binomial

distribution can be approximated by the normal distribution.

Further Reading

Read about the “quincunx”, a pinball-like simulation device for

illustrating the binomial distribution.

The binomial distribution is a staple of introductory statistics, and all

introductory statistics texts will have a chapter or two on it.

Poisson and Related Distributions

Many processes produce events randomly at a given overall rate—visitors

arriving at a website, cars arriving at a toll plaza (events spread over time),

imperfections in a square meter of fabric, or typos per 100 lines of code

(events spread over space).



Key Terms for Poisson and Related Distributions

Lambda

The rate (per unit of time or space) at which events occur.

Poisson distribution

The frequency distribution of the number of events in sampled

units of time or space.

Exponential distribution

The frequency distribution of the time or distance from one event

to the next event.

Weibull distribution

A generalized version of the exponential, in which the event rate is

allowed to shift over time.

Poisson Distributions

From prior data we can estimate the average number of events per unit of

time or space, but we might also want to know how different this might be

from one unit of time/space to another. The Poisson distribution tells us the

distribution of events per unit of time or space when we sample many such

units. It is useful when addressing queuing questions like “How much

capacity do we need to be 95% sure of fully processing the internet traffic

that arrives on a server in any 5-second period?”

The key parameter in a Poisson distribution is , or lambda. This is the

mean number of events that occurs in a specified interval of time or space.

The variance for a Poisson distribution is also .

A common technique is to generate random numbers from a Poisson



distribution as part of a queuing simulation. The rpois function in R does

this, taking only two arguments—the quantity of random numbers sought,

and lambda:

rpois(100, lambda = 2)

This code will generate 100 random numbers from a Poisson distribution

with = 2. For example, if incoming customer service calls average 2 per

minute, this code will simulate 100 minutes, returning the number of calls

in each of those 100 minutes.

Exponential Distribution

Using the same parameter that we used in the Poisson distribution, we

can also model the distribution of the time between events: time between

visits to a website or between cars arriving at a toll plaza. It is also used in

engineering to model time to failure, and in process management to model,

for example, the time required per service call. The R code to generate

random numbers from an exponential distribution takes two arguments, n

(the quantity of numbers to be generated), and rate, the number of events

per time period. For example:

rexp(n = 100, rate = .2)

This code would generate 100 random numbers from an exponential

distribution where the mean number of events per time period is 2. So you

could use it to simulate 100 intervals, in minutes, between service calls,

where the average rate of incoming calls is 0.2 per minute.

A key assumption in any simulation study for either the Poisson or

exponential distribution is that the rate, , remains constant over the period

being considered. This is rarely reasonable in a global sense; for example,



traffic on roads or data networks varies by time of day and day of week.

However, the time periods, or areas of space, can usually be divided into

segments that are sufficiently homogeneous so that analysis or simulation

within those periods is valid.

Estimating the Failure Rate

In many applications, the event rate, , is known or can be estimated from

prior data. However, for rare events, this is not necessarily so. Aircraft

engine failure, for example, is sufficiently rare (thankfully) that, for a given

engine type, there may be little data on which to base an estimate of time

between failures. With no data at all, there is little basis on which to

estimate an event rate. However, you can make some guesses: if no events

have been seen after 20 hours, you can be pretty sure that the rate is not 1

per hour. Via simulation, or direct calculation of probabilities, you can

assess different hypothetical event rates and estimate threshold values

below which the rate is very unlikely to fall. If there is some data but not

enough to provide a precise, reliable estimate of the rate, a goodness-of-fit

test (see “Chi-Square Test”) can be applied to various rates to determine

how well they fit the observed data.

Weibull Distribution

In many cases, the event rate does not remain constant over time. If the

period over which it changes is much longer than the typical interval

between events, there is no problem; you just subdivide the analysis into

the segments where rates are relatively constant, as mentioned before. If,

however, the event rate changes over the time of the interval, the

exponential (or Poisson) distributions are no longer useful. This is likely to

be the case in mechanical failure—the risk of failure increases as time goes

by. The Weibull distribution is an extension of the exponential distribution,

in which the event rate is allowed to change, as specified by a shape

parameter, . If > 1, the probability of an event increases over time, if



< 1, it decreases. Because the Weibull distribution is used with time-to

failure analysis instead of event rate, the second parameter is expressed in

terms of characteristic life, rather than in terms of the rate of events per

interval. The symbol used is , the Greek letter eta. It is also called the

scale parameter.

With the Weibull, the estimation task now includes estimation of both

parameters, . Software is used to model the data and yield an

estimate of the best-fitting Weibull distribution.

and

The R code to generate random numbers from a Weibull distribution takes

three arguments, n (the quantity of numbers to be generated), shape, and

scale. For example, the following code would generate 100 random

numbers (lifetimes) from a Weibull distribution with shape of 1.5 and

characteristic life of 5,000:

rweibull(100,1.5,5000)

Key Ideas

For events that occur at a constant rate, the number of events per

unit of time or space can be modeled as a Poisson distribution.

In this scenario, you can also model the time or distance between

one event and the next as an exponential distribution.

A changing event rate over time (e.g., an increasing probability of

device failure) can be modeled with the Weibull distribution.

Further Reading



Modern Engineering Statistics by Tom Ryan (Wiley, 2007) has a

chapter devoted to the probability distributions used in engineering

applications.

Read an engineering-based perspective on the use of the Weibull

distribution (mainly from an engineering perspective) here and here.

Summary

In the era of big data, the principles of random sampling remain important

when accurate estimates are needed. Random selection of data can reduce

bias and yield a higher quality data set than would result from just using the

conveniently available data. Knowledge of various sampling and data

generating distributions allows us to quantify potential errors in an estimate

that might be due to random variation. At the same time, the bootstrap

(sampling with replacement from an observed data set) is an attractive “one

size fits all” method to determine possible error in sample estimates.

1 The bell curve is iconic but perhaps overrated. George W. Cobb, the

Mount Holyoke statistician noted for his contribution to the philosophy of

teaching introductory statistics, argued in a November 2015 editorial in the

American Statistician that the “standard introductory course, which puts the

normal distribution at its center, had outlived the usefulness of its

centrality.”



Chapter 3. Statistical Experiments and Significance Testing

Design of experiments is a cornerstone of the practice of statistics, with

applications in virtually all areas of research. The goal is to design an

experiment in order to confirm or reject a hypothesis. Data scientists are

faced with the need to conduct continual experiments, particularly

regarding user interface and product marketing. This chapter reviews

traditional experimental design and discusses some common challenges in

data science. It also covers some oft-cited concepts in statistical inference

and explains their meaning and relevance (or lack of relevance) to data

science.

Whenever you see references to statistical significance, t-tests, or p-values,

it is typically in the context of the classical statistical inference “pipeline”

(see Figure 3-1). This process starts with a hypothesis (“drug A is better

than the existing standard drug,” “price A is more profitable than the

existing price B”). An experiment (it might be an A/B test) is designed to

test the hypothesis—designed in such a way that, hopefully, will deliver

conclusive results. The data is collected and analyzed, and then a

conclusion is drawn. The term inference reflects the intention to apply the

experiment results, which involve a limited set of data, to a larger process

or population.

Figure 3-1. The classical statistical inference pipeline

A/B Testing

An A/B test is an experiment with two groups to establish which of two

treatments, products, procedures, or the like is superior. Often one of the

two treatments is the standard existing treatment, or no treatment. If a



standard (or no) treatment is used, it is called the control. A typical

hypothesis is that treatment is better than control.

Key Terms for A/B Testing

Treatment

Something (drug, price, web headline) to which a subject is

exposed.

Treatment group

A group of subjects exposed to a specific treatment.

Control group

A group of subjects exposed to no (or standard) treatment.

Randomization

The process of randomly assigning subjects to treatments.

Subjects

The items (web visitors, patients, etc.) that are exposed to

treatments.

Test statistic

The metric used to measure the effect of the treatment.

A/B tests are common in web design and marketing, since results are so

readily measured. Some examples of A/B testing include:

Testing two soil treatments to determine which produces better seed

germination

Testing two therapies to determine which suppresses cancer more



effectively

Testing two prices to determine which yields more net profit

Testing two web headlines to determine which produces more clicks

(Figure 3-2)

Testing two web ads to determine which generates more conversions

Figure 3-2. Marketers continually test one web presentation against another



A proper A/B test has subjects that can be assigned to one treatment or

another. The subject might be a person, a plant seed, a web visitor; the key

is that the subject is exposed to the treatment. Ideally, subjects are

randomized (assigned randomly) to treatments. In this way, you know that

any difference between the treatment groups is due to one of two things:

The effect of the different treatments

Luck of the draw in which subjects are assigned to which treatments

(i.e., the random assignment may have resulted in the naturally better

performing subjects being concentrated in A or B)

You also need to pay attention to the test statistic or metric you use to

compare group A to group B. Perhaps the most common metric in data

science is a binary variable: click or no-click, buy or don’t buy, fraud or no

fraud, and so on. Those results would be summed up in a 2×2 table.

Table 3-1 is a 2×2 table for an actual price test.

Table 3-1. 2×2 table for

ecommerce experiment

results

Outcome Price A Price B

Conversion 200 182

No conversion 23,539 22,406

If the metric is a continuous variable (purchase amount, profit, etc.), or a

count (e.g., days in hospital, pages visited) the result might be displayed

differently. If one were interested not in conversion, but in revenue per

page view, the results of the price test in Table 3-1 might look like this in

typical default software output:



Revenue/page-view with price A: mean = 3.87, SD = 51.10

Revenue/page-view with price B: mean = 4.11, SD = 62.98

“SD” refers to the standard deviation of the values within each group.

Warning

Just because statistical software—including R—generates output by default

does not mean that all the output is useful or relevant. You can see that the

preceding standard deviations are not that useful; on their face they suggest

that numerous values might be negative, when negative revenue is not

feasible. This data consists of a small set of relatively high values (page

views with conversions) and a huge number of 0-values (page views with

no conversion). It is difficult to sum up the variability of such data with a

single number, though the mean absolute deviation from the mean (7.68 for

A and 8.15 for B) is more reasonable than the standard deviation.

Why Have a Control Group?

Why not skip the control group and just run an experiment applying the

treatment of interest to only one group, and compare the outcome to prior

experience?

Without a control group, there is no assurance that “other things are equal”

and that any difference is really due to the treatment (or to chance). When

you have a control group, it is subject to the same conditions (except for the

treatment of interest) as the treatment group. If you simply make a

comparison to “baseline” or prior experience, other factors, besides the

treatment, might differ.

Blinding in studies

A blind study is one in which the subjects are unaware of whether they are

getting treatment A or treatment B. Awareness of receiving a particular

treatment can affect response. A double blind study is one in which the

investigators and facilitators (e.g., doctors and nurses in a medical study)

are unaware which subjects are getting which treatment. Blinding is not



possible when the nature of the treatment is transparent—for example,

cognitive therapy from a computer versus a psychologist.

The use of A/B testing in data science is typically in a web context.

Treatments might be the design of a web page, the price of a product, the

wording of a headline, or some other item. Some thought is required to

preserve the principles of randomization. Typically the subject in the

experiment is the web visitor, and the outcomes we are interested in

measuring are clicks, purchases, visit duration, number of pages visited,

whether a particular page is visited, and the like. In a standard A/B

experiment, you need to decide on one metric ahead of time. Multiple

behavior metrics might be collected and be of interest, but if the experiment

is expected to lead to a decision between treatment A and treatment B, a

single metric, or test statistic, needs to be established beforehand. Selecting

a test statistic after the experiment is conducted opens the door to

researcher bias.

Why Just A/B? Why Not C, D…?

A/B tests are popular in the marketing and ecommerce worlds, but are far

from the only type of statistical experiment. Additional treatments can be

included. Subjects might have repeated measurements taken.

Pharmaceutical trials where subjects are scarce, expensive, and acquired

over time are sometimes designed with multiple opportunities to stop the

experiment and reach a conclusion.

Traditional statistical experimental designs focus on answering a static

question about the efficacy of specified treatments. Data scientists are less

interested in the question:

Is the difference between price A and price B statistically significant?

than in the question:

Which, out of multiple possible prices, is best?



For this, a relatively new type of experimental design is used: the multi-arm

bandit (see “Multi-Arm Bandit Algorithm”).

Getting Permission

In scientific and medical research involving human subjects, it is typically

necessary to get their permission, as well as obtain the approval of an

institutional review board. Experiments in business that are done as a part

of ongoing operations almost never do this. In most cases (e.g., pricing

experiments, or experiments about which headline to show or which offer

should be made), this practice is widely accepted. Facebook, however, ran

afoul of this general acceptance in 2014 when it experimented with the

emotional tone in users’ newsfeeds. Facebook used sentiment analysis to

classify newsfeed posts as positive or negative, then altered the

positive/negative balance in what it showed users. Some randomly selected

users experienced more positive posts, while others experienced more

negative posts. Facebook found that the users who experienced a more

positive newsfeed were more likely to post positively themselves, and vice

versa. The magnitude of the effect was small, however, and Facebook faced

much criticism for conducting the experiment without users’ knowledge.

Some users speculated that Facebook might have pushed some extremely

depressed users over the edge, if they got the negative version of their feed.

Key Ideas

Subjects are assigned to two (or more) groups that are treated

exactly alike, except that the treatment under study differs from one

to another.

Ideally, subjects are assigned randomly to the groups.

For Further Reading



Two-group comparisons (A/B tests) are a staple of traditional statistics,

and just about any introductory statistics text will have extensive

coverage of design principles and inference procedures. For a discussion

that places A/B tests in more of a data science context and uses

resampling, see Introductory Statistics and Analytics: A Resampling

Perspective by Peter Bruce (Wiley, 2014).

For web testing, the logistical aspects of testing can be just as

challenging as the statistical ones. A good place to start is the Google

Analytics help section on Experiments.

Beware advice found in the ubiquitous guides to A/B testing that you

see on the web, such as these words in one such guide: “Wait for about

1,000 total visitors and make sure you run the test for a week.” Such

general rules of thumb are not statistically meaningful; see “Power and

Sample Size” for more detail.

Hypothesis Tests

Hypothesis tests, also called significance tests, are ubiquitous in the

traditional statistical analysis of published research. Their purpose is to help

you learn whether random chance might be responsible for an observed

effect.



Key Terms

Null hypothesis

The hypothesis that chance is to blame.

Alternative hypothesis

Counterpoint to the null (what you hope to prove).

One-way test

Hypothesis test that counts chance results only in one direction.

Two-way test

Hypothesis test that counts chance results in two directions.

An A/B test (see “A/B Testing”) is typically constructed with a hypothesis

in mind. For example, the hypothesis might be that price B produces higher

profit. Why do we need a hypothesis? Why not just look at the outcome of

the experiment and go with whichever treatment does better?

The answer lies in the tendency of the human mind to underestimate the

scope of natural random behavior. One manifestation of this is the failure to

anticipate extreme events, or so-called “black swans” (see “Long-Tailed

Distributions”). Another manifestation is the tendency to misinterpret

random events as having patterns of some significance. Statistical

hypothesis testing was invented as a way to protect researchers from being

fooled by random chance.



Misinterpreting Randomness

You can observe the human tendency to underestimate randomness in

this experiment. Ask several friends to invent a series of 50 coin flips:

have them write down a series of random Hs and Ts. Then ask them to

actually flip a coin 50 times and write down the results. Have them put

the real coin flip results in one pile, and the made-up results in

another. It is easy to tell which results are real: the real ones will have

longer runs of Hs or Ts. In a set of 50 real coin flips, it is not at all

unusual to see five or six Hs or Ts in a row. However, when most of

us are inventing random coin flips and we have gotten three or four Hs

in a row, we tell ourselves that, for the series to look random, we had

better switch to T.

The other side of this coin, so to speak, is that when we do see the

real-world equivalent of six Hs in a row (e.g., when one headline

outperforms another by 10%), we are inclined to attribute it to

something real, not just chance.

In a properly designed A/B test, you collect data on treatments A and B in

such a way that any observed difference between A and B must be due to

either:

Random chance in assignment of subjects

A true difference between A and B

A statistical hypothesis test is further analysis of an A/B test, or any

randomized experiment, to assess whether random chance is a reasonable

explanation for the observed difference between groups A and B.

The Null Hypothesis

Hypothesis tests use the following logic: “Given the human tendency to



react to unusual but random behavior and interpret it as something

meaningful and real, in our experiments we will require proof that the

difference between groups is more extreme than what chance might

reasonably produce.” This involves a baseline assumption that the

treatments are equivalent, and any difference between the groups is due to

chance. This baseline assumption is termed the null hypothesis. Our hope is

then that we can, in fact, prove the null hypothesis wrong, and show that

the outcomes for groups A and B are more different than what chance

might produce.

One way to do this is via a resampling permutation procedure, in which we

shuffle together the results from groups A and B and then repeatedly deal

out the data in groups of similar sizes, then observe how often we get a

difference as extreme as the observed difference. See “Resampling” for

more detail.

Alternative Hypothesis

Hypothesis tests by their nature involve not just a null hypothesis, but also

an offsetting alternative hypothesis. Here are some examples:

Null = “no difference between the means of group A and group B,”

alternative = “A is different from B” (could be bigger or smaller)

Null = “A B,” alternative = “B > A”

Null = “B is not X% greater than A,” alternative = “B is X% greater

than A”

Taken together, the null and alternative hypotheses must account for all

possibilities. The nature of the null hypothesis determines the structure of

the hypothesis test.

One-Way, Two-Way Hypothesis Test

Often, in an A/B test, you are testing a new option (say B), against an

established default option (A) and the presumption is that you will stick



with the default option unless the new option proves itself definitively

better. In such a case, you want a hypothesis test to protect you from being

fooled by chance in the direction favoring B. You don’t care about being

fooled by chance in the other direction, because you would be sticking with

A unless B proves definitively better. So you want a directional alternative

hypothesis (B is better than A). In such a case, you use a one-way (or one

tail) hypothesis test. This means that extreme chance results in only one

direction direction count toward the p-value.

If you want a hypothesis test to protect you from being fooled by chance in

either direction, the alternative hypothesis is bidirectional (A is different

from B; could be bigger or smaller). In such a case, you use a two-way (or

two-tail) hypothesis. This means that extreme chance results in either

direction count toward the p-value.

A one-tail hypothesis test often fits the nature of A/B decision making, in

which a decision is required and one option is typically assigned “default”

status unless the other proves better. Software, however, including R,

typically provides a two-tail test in its default output, and many statisticians

opt for the more conservative two-tail test just to avoid argument. One-tail

versus two-tail is a confusing subject, and not that relevant for data science,

where the precision of p-value calculations is not terribly important.



Key Ideas

A null hypothesis is a logical construct embodying the notion that

nothing special has happened, and any effect you observe is due to

random chance.

The hypothesis test assumes that the null hypothesis is true, creates

a “null model” (a probability model), and tests whether the effect

you observe is a reasonable outcome of that model.

Further Reading

The Drunkard’s Walk by Leonard Mlodinow (Vintage Books, 2008) is a

readable survey of the ways in which “randomness rules our lives.”

David Freedman, Robert Pisani, and Roger Purves’s classic statistics

text Statistics, 4th ed. (W. W. Norton, 2007) has excellent

nonmathematical treatments of most statistics topics, including

hypothesis testing.

Introductory Statistics and Analytics: A Resampling Perspective by

Peter Bruce (Wiley, 2014) develops hypothesis testing concepts using

resampling.

Resampling

Resampling in statistics means to repeatedly sample values from observed

data, with a general goal of assessing random variability in a statistic. It can

also be used to assess and improve the accuracy of some machine-learning

models (e.g., the predictions from decision tree models built on multiple

bootstrapped data sets can be averaged in a process known as bagging: see

“Bagging and the Random Forest”).

There are two main types of resampling procedures: the bootstrap and



permutation tests. The bootstrap is used to assess the reliability of an

estimate; it was discussed in the previous chapter (see “The Bootstrap”).

Permutation tests are used to test hypotheses, typically involving two or

more groups, and we discuss those in this section.

Key Terms

Permutation test

The procedure of combining two or more samples together, and

randomly (or exhaustively) reallocating the observations to

resamples.

Synonyms

Randomization test, random permutation test, exact test.

With or without replacement

In sampling, whether or not an item is returned to the sample

before the next draw.

Permutation Test

In a permutation procedure, two or more samples are involved, typically

the groups in an A/B or other hypothesis test. Permute means to change the

order of a set of values. The first step in a permutation test of a hypothesis

is to combine the results from groups A and B (and, if used, C, D, …)

together. This is the logical embodiment of the null hypothesis that the

treatments to which the groups were exposed do not differ. We then test

that hypothesis by randomly drawing groups from this combined set, and

seeing how much they differ from one another. The permutation procedure

is as follows:

1. Combine the results from the different groups in a single data set.



2. Shuffle the combined data, then randomly draw (without replacing) a

resample of the same size as group A.

3. From the remaining data, randomly draw (without replacing) a resample

of the same size as group B.

4. Do the same for groups C, D, and so on.

5. Whatever statistic or estimate was calculated for the original samples

(e.g., difference in group proportions), calculate it now for the

resamples, and record; this constitutes one permutation iteration.

6. Repeat the previous steps R times to yield a permutation distribution of

the test statistic.

Now go back to the observed difference between groups and compare it to

the set of permuted differences. If the observed difference lies well within

the set of permuted differences, then we have not proven anything—the

observed difference is within the range of what chance might produce.

However, if the observed difference lies outside most of the permutation

distribution, then we conclude that chance is not responsible. In technical

terms, the difference is statistically significant. (See “Statistical

Significance and P-Values”.)

Example: Web Stickiness

A company selling a relatively high-value service wants to test which of

two web presentations does a better selling job. Due to the high value of the

service being sold, sales are infrequent and the sales cycle is lengthy; it

would take too long to accumulate enough sales to know which

presentation is superior. So the company decides to measure the results

with a proxy variable, using the detailed interior page that describes the

service.

Tip

A proxy variable is one that stands in for the true variable of interest, which



may be unavailable, too costly, or too time-consuming to measure. In

climate research, for example, the oxygen content of ancient ice cores is

used as a proxy for temperature. It is useful to have at least some data on

the true variable of interest, so the strength of its association with the proxy

can be assessed.

One potential proxy variable for our company is the number of clicks on

the detailed landing page. A better one is how long people spend on the

page. It is reasonable to think that a web presentation (page) that holds

people’s attention longer will lead to more sales. Hence, our metric is

average session time, comparing page A to page B.

Due to the fact that this is an interior, special-purpose page, it does not

receive a huge number of visitors. Also note that Google Analytics, which

is how we measure session time, cannot measure session time for the last

session a person visits. Instead of deleting that session from the data,

though, GA records it as a zero, so the data requires additional processing

to remove those sessions. The result is a total of 36 sessions for the two

different presentations, 21 for page A and 15 for page B. Using ggplot, we

can visually compare the session times using side-by-side boxplots:

ggplot(session_times, aes(x=Page, y=Time)) +

geom_boxplot()

The boxplot, shown in Figure 3-3, indicates that page B leads to longer

sessions than page A. The means for each group can be computed as

follows:

mean_a <- mean(session_times[session_times['Page']=='Page A',

'Time'])mean_b <- mean(session_times[session_times['Page']=='Page B',

'Time'])

mean_b - mean_a

[1] 21.4



Page B has session times greater, on average, by 21.4 seconds versus page

A. The question is whether this difference is within the range of what

random chance might produce, or, alternatively, is statistically significant.

One way to answer this is to apply a permutation test—combine all the

session times together, then repeatedly shuffle and divide them into groups

of 21 (recall that n = 21 for page A) and 15 (n = 15 for B).

To apply a permutation test, we need a function to randomly assign the 36

session times to a group of 21 (page A) and a group of 15 (page B):

perm_fun <- function(x, n1, n2)

{

n <- n1 + n2

idx_b <- sample(1:n, n1)

idx_a <- setdiff(1:n, idx_b)

mean_diff <- mean(x[idx_b]) - mean(x[idx_a])

return(mean_diff)

}



Figure 3-3. Session times for web pages A and B

This function works by sampling without replacement n2 indices and

assigning them to the B group; the remaining n1 indices are assigned to

group A. The difference between the two means is returned. Calling this

function R = 1,000 times and specifying n2 = 15 and n1 = 21 leads to a

distribution of differences in the session times that can be plotted as a

histogram.



perm_diffs <- rep(0, 1000)

for(i in 1:1000)

perm_diffs[i] = perm_fun(session_times[,'Time'], 21, 15)

hist(perm_diffs, xlab='Session time differences (in seconds)')

abline(v = mean_b - mean_a)

The histogram, shown in Figure 3-4 shows that mean difference of random

permutations often exceeds the observed difference in session times (the

vertical line). This suggests that the oberved difference in session time

between page A and page B is well within the range of chance variation,

thus is not statistically significant.



Figure 3-4. Frequency distribution for session time differences between pages A

and B

Exhaustive and Bootstrap Permutation Test

In addition to the preceding random shuffling procedure, also called a

random permutation test or a randomization test, there are two variants of

the permutation test:

An exhaustive permutation test



A bootstrap permutation test

In an exhaustive permutation test, instead of just randomly shuffling and

dividing the data, we actually figure out all the possible ways it could be

divided. This is practical only for relatively small sample sizes. With a

large number of repeated shufflings, the random permutation test results

approximate those of the exhaustive permutation test, and approach them in

the limit. Exhaustive permutation tests are also sometimes called exact

tests, due to their statistical property of guaranteeing that the null model

will not test as “significant” more than the alpha level of the test (see

“Statistical Significance and P-Values”).

In a bootstrap permutation test, the draws outlined in steps 2 and 3 of the

random permutation test are made with replacement instead of without

replacement. In this way the resampling procedure models not just the

random element in the assignment of treatment to subject, but also the

random element in the selection of subjects from a population. Both

procedures are encountered in statistics, and the distinction between them is

somewhat convoluted and not of consequence in the practice of data

science.

Permutation Tests: The Bottom Line for Data Science

Permutation tests are useful heuristic procedures for exploring the role of

random variation. They are relatively easy to code, interpret and explain,

and they offer a useful detour around the formalism and “false

determinism” of formula-based statistics.

One virtue of resampling, in contrast to formula approaches, is that it comes

much closer to a “one size fits all” approach to inference. Data can be

numeric or binary. Sample sizes can be the same or different. Assumptions

about normally-distributed data are not needed.



Key Ideas

In a permutation test, multiple samples are combined, then

shuffled.

The shuffled values are then divided into resamples, and the

statistic of interest is calculated.

This process is then repeated, and the resampled statistic is

tabulated.

Comparing the observed value of the statistic to the resampled

distribution allows you to judge whether an observed difference

between samples might occur by chance.

For Further Reading

Randomization Tests, 4th ed., by Eugene Edgington and Patrick

Onghena (Chapman Hall, 2007), but don’t get too drawn into the thicket

of nonrandom sampling.

Introductory Statistics and Analytics: A Resampling Perspective by

Peter Bruce (Wiley, 2015).

Statistical Significance and P-Values

Statistical significance is how statisticians measure whether an experiment

(or even a study of existing data) yields a result more extreme than what

chance might produce. If the result is beyond the realm of chance variation,

it is said to be statistically significant.



Key Terms

P-value

Given a chance model that embodies the null hypothesis, the p

value is the probability of obtaining results as unusual or extreme

as the observed results.

Alpha

The probability threshold of “unusualness” that chance results

must surpass, for actual outcomes to be deemed statistically

significant.

Type 1 error

Mistakenly concluding an effect is real (when it is due to chance).

Type 2 error

Mistakenly concluding an effect is due to chance (when it is real).

Consider in Table 3-2 the results of the web test shown earlier.

Table 3-2. 2×2 table for

ecommerce experiment

results

Outcome Price A Price B

Conversion 200 182

No conversion 23539 22406

Price A converts almost 5% better than price B (0.8425% versus 0.8057%

—a difference of 0.0368 percentage points), big enough to be meaningful



in a high-volume business. We have over 45,000 data points here, and it is

tempting to consider this as “big data,” not requiring tests of statistical

significance (needed mainly to account for sampling variability in small

samples). However, the conversion rates are so low (less than 1%) that the

actual meaningful values—the conversions—are only in the 100s, and the

sample size needed is really determined by these conversions. We can test

whether the difference in conversions between prices A and B is within the

range of chance variation, using a resampling procedure. By “chance

variation,” we mean the random variation produced by a probability model

that embodies the null hypothesis that there is no difference between the

rates (see “The Null Hypothesis”). The following permutation procedure

asks “if the two prices share the same conversion rate, could chance

variation produce a difference as big as 5%?”

1. Create an urn with all sample results: this represents the supposed shared

conversion rate of 382 ones and 45,945 zeros = 0.008246 = 0.8246%.

2. Shuffle and draw out a resample of size 23,739 (same n as price A), and

record how many 1s.

Record the number of 1s in the remaining 22,588 (same n as price B).3.

4. Record the difference in proportion 1s.

5. Repeat steps 2–4.

6. How often was the difference >= 0.0368?

Reusing the function perm_fun defined in “Example: Web Stickiness”, we

can create a histogram of randomly permuted differences in conversion

rate:

obs_pct_diff <- 100*(200/23739 - 182/22588)

conversion <- c(rep(0, 45945), rep(1, 382))

perm_diffs <- rep(0, 1000)



for(i in 1:1000)

perm_diffs[i] = 100*perm_fun(conversion, 23739, 22588 )

hist(perm_diffs, xlab='Session time differences (in seconds)')

abline(v = obs_pct_diff)

See the histogram of 1,000 resampled results in Figure 3-5: as it happens, in

this case the observed difference of 0.0368% is well within the range of

chance variation.

Figure 3-5. Frequency distribution for the difference in conversion rates between

pages A and B

P-Value



Simply looking at the graph is not a very precise way to measure statistical

significance, so of more interest is the p-value. This is the frequency with

which the chance model produces a result more extreme than the observed

result. We can estimate a p-value from our permutation test by taking the

proportion of times that the permutation test produces a difference equal to

or greater than the observed difference:

mean(perm_diffs > obs_pct_diff)

[1] 0.308

The p-value is 0.308, which means that we would expect to achieve a result

as extreme as this, or more extreme, by random chance over 30% of the

time.

In this case, we didn’t need to use a permutation test to get a p-value. Since

we have a binomial distribution, we can approximate the p-value using the

normal distribution. In R code, we do this using the function prop.test:

> prop.test(x=c(200,182), n=c(23739,22588), alternative="greater")

2-sample test for equality of proportions with continuity

correction

data: c(200, 182) out of c(23739, 22588)

X-squared = 0.14893, df = 1, p-value = 0.3498

alternative hypothesis: greater

95 percent confidence interval:

-0.001057439 1.000000000

sample estimates:

prop 1 prop 2

0.008424955 0.008057376

The argument x is the number of successes for each group and the

argument n is the number of trials. The normal approximation yields a p

value of 0.3498, which is close to the p-value obtained from the



permutation test.

Alpha

Statisticians frown on the practice of leaving it to the researcher’s

discretion to determine whether a result is “too unusual” to happen by

chance. Rather, a threshold is specified in advance, as in “more extreme

than 5% of the chance (null hypothesis) results”; this threshold is known as

alpha. Typical alpha levels are 5% and 1%. Any chosen level is an arbitrary

decision—there is nothing about the process that will guarantee correct

decisions x% of the time. This is because the probability question being

answered is not “what is the probability that this happened by chance?” but

rather “given a chance model, what is the probability of a result this

extreme?” We then deduce backward about the appropriateness of the

chance model, but that judgment does not carry a probability. This point

has been the subject of much confusion.

Value of the p-value

Considerable controversy has surrounded the use of the p-value in recent

years. One psychology journal has gone so far as to “ban” the use of p

values in submitted papers on the grounds that publication decisions based

solely on the p-value were resulting in the publication of poor research. Too

many researchers, only dimly aware of what a p-value really means, root

around in the data and among different possible hypotheses to test, until

they find a combination that yields a significant p-value and, hence, a paper

suitable for publication.

The real problem is that people want more meaning from the p-value than it

contains. Here’s what we would like the p-value to convey:

The probability that the result is due to chance.

We hope for a low value, so we can conclude that we’ve proved something.

This is how many journal editors were interpreting the p-value. But here’s

what the p-value actually represents:



The probability that, given a chance model, results as extreme as the

observed results could occur.

The difference is subtle, but real. A significant p-value does not carry you

quite as far along the road to “proof” as it seems to promise. The logical

foundation for the conclusion “statistically significant” is somewhat weaker

when the real meaning of the p-value is understood.

In March 2016, the American Statistical Association, after much internal

deliberation, revealed the extent of misunderstanding about p-values when

it issued a cautionary statement regarding their use.

The ASA statement stressed six principles for researchers and journal

editors:

1. P-values can indicate how incompatible the data are with a specified

statistical model.

2. P-values do not measure the probability that the studied hypothesis is

true, or the probability that the data were produced by random chance

alone.

3. Scientific conclusions and business or policy decisions should not be

based only on whether a p-value passes a specific threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the size of an

effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence

regarding a model or hypothesis.

Type 1 and Type 2 Errors

In assessing statistical significance, two types of error are possible:

Type 1 error, in which you mistakenly conclude an effect is real, when it



is really just due to chance

Type 2 error, in which you mistakenly conclude that an effect is not real

(i.e., due to chance), when it really is real

Actually, a Type 2 error is not so much an error as a judgment that the

sample size is too small to detect the effect. When a p-value falls short of

statistical significance (e.g., it exceeds 5%), what we are really saying is

“effect not proven.” It could be that a larger sample would yield a smaller

p-value.

The basic function of significance tests (also called hypothesis tests) is to

protect against being fooled by random chance; thus they are typically

structured to minimize Type 1 errors.

Data Science and P-Values

The work that data scientists do is typically not destined for publication in

scientific journals, so the debate over the value of a p-value is somewhat

academic. For a data scientist, a p-value is a useful metric in situations

where you want to know whether a model result that appears interesting

and useful is within the range of normal chance variability. As a decision

tool in an experiment, a p-value should not be considered controlling, but

merely another point of information bearing on a decision. For example, p

values are sometimes used as intermediate inputs in some statistical or

machine learning models—a feature night be included in or excluded from

a model depending on its p-value.



Key Ideas

Significance tests are used to determine whether an observed effect

is within the range of chance variation for a null hypothesis model.

The p-value is the probability that results as extreme as the

observed results might occur, given a null hypothesis model.

The alpha value is the threshold of “unusualness” in a null

hypothesis chance model.

Significance testing has been much more relevant for formal

reporting of research than for data science (but has been fading

recently, even for the former).

Further Reading

Stephen Stigler, “Fisher and the 5% Level,” Chance vol. 21, no. 4

(2008): 12. This article is a short commentary on Ronald Fisher’s 1925

book Statistical Methods for Research Workers, and his emphasis on the

5% level of significance.

See also “Hypothesis Tests” and the further reading mentioned there.

t-Tests

There are numerous types of significance tests, depending on whether the

data comprises count data or measured data, how many samples there are,

and what’s being measured. A very common one is the t-test, named after

Student’s t-distribution, originally developed by W. S. Gossett to

approximate the distribution of a single sample mean (see “Student’s t

Distribution”).



Key Terms

Test statistic

A metric for the difference or effect of interest.

t-statistic

A standardized version of the test statistic.

t-distribution

A reference distribution (in this case derived from the null

hypothesis), to which the observed t-statistic can be compared.

All significance tests require that you specify a test statistic to measure the

effect you are interested in, and help you determine whether that observed

effect lies within the range of normal chance variation. In a resampling test

(see the discussion of permutation in “Permutation Test”), the scale of the

data does not matter. You create the reference (null hypothesis) distribution

from the data itself, and use the test statistic as is.

In the 1920s and 30s, when statistical hypothesis testing was being

developed, it was not feasible to randomly shuffle data thousands of times

to do a resampling test. Statisticians found that a good approximation to the

permutation (shuffled) distribution was the t-test, based on Gossett’s t

distribution. It is used for the very common two-sample comparison—A/B

test—in which the data is numeric. But in order for the t-distribution to be

used without regard to scale, a standardized form of the test statistic must

be used.

A classic statistics text would at this stage show various formulas that

incorporate Gossett’s distribution and demonstrate how to standardize your

data to compare it to the standard t-distribution. These formulas are not

shown here because all statistical software, as well as R and Python,



include commands that embody the formula. In R, the function is t.test:

> t.test(Time ~ Page, data=session_times, alternative='less' )

Welch Two Sample t-test

data: Time by Page

t = -1.0983, df = 27.693, p-value = 0.1408

alternative hypothesis: true difference in means is less than 0

95 percent confidence interval:

-Inf 19.59674

sample estimates:

mean in group Page A mean in group Page B

126.3333 162.0000

The alternative hypothesis is that the session time mean for page A is less

than for page B. This is fairly close to the permutation test p-value of 0.124

(see “Example: Web Stickiness”).

In a resampling mode, we structure the solution to reflect the observed data

and the hypothesis to be tested, not worrying about whether the data is

numeric or binary, sample sizes are balanced or not, sample variances, or a

variety of other factors. In the formula world, many variations present

themselves, and they can be bewildering. Statisticians need to navigate that

world and learn its map, but data scientists do not—they are typically not in

the business of sweating the details of hypothesis tests and confidence

intervals the way a researcher preparing a paper for presentation might.



Key Ideas

Before the advent of computers, resampling tests were not practical

and statisticians used standard reference distributions.

A test statistic could then be standardized and compared to the

reference distribution.

One such widely used standardized statistic is the t-statistic.

Further Reading

Any introductory statistics text will have illustrations of the t-statistic

and its uses; two good ones are Statistics, 4th ed., by David Freedman,

Robert Pisani, and Roger Purves (W. W. Norton, 2007) and The Basic

Practice of Statistics by David S. Moore (Palgrave Macmillan, 2010).

For a treatment of both the t-test and resampling procedures in parallel,

see Introductory Statistics and Analytics: A Resampling Perspective by

Peter Bruce (Wiley, 2014) or Statistics by Robin Lock and four other

Lock family members (Wiley, 2012).

Multiple Testing

As we’ve mentioned previously, there is a saying in statistics: “torture the

data long enough, and it will confess.” This means that if you look at the

data through enough different perspectives, and ask enough questions, you

can almost invariably find a statistically significant effect.



Key Terms

Type 1 error

Mistakenly concluding that an effect is statistically significant.

False discovery rate

Across multiple tests, the rate of making a Type 1 error.

Adjustment of p-values

Accounting for doing multiple tests on the same data.

Overfitting

Fitting the noise.

For example, if you have 20 predictor variables and one outcome variable,

all randomly generated, the odds are pretty good that at least one predictor

will (falsely) turn out to be statistically significant if you do a series of 20

significance tests at the alpha = 0.05 level. As previously discussed, this is

called a Type 1 error. You can calculate this probability by first finding the

probability that all will correctly test nonsignificant at the 0.05 level. The

probability that one will correctly test nonsignificant is 0.95, so the

probability that all 20 will correctly test nonsignificant is 0.95 × 0.95 × 0.95

… or 0.9520= 0.36.1 The probability that at least one predictor will (falsely)

test significant is the flip side of this probability, or 1 – (probability that all

will be nonsignificant) = 0.64.

This issue is related to the problem of overfitting in data mining, or “fitting

the model to the noise.” The more variables you add, or the more models

you run, the greater the probability that something will emerge as

“significant” just by chance.

In supervised learning tasks, a holdout set where models are assessed on



data that the model has not seen before mitigates this risk. In statistical and

machine learning tasks not involving a labeled holdout set, the risk of

reaching conclusions based on statistical noise persists.

In statistics, there are some procedures intended to deal with this problem

in very specific circumstances. For example, if you are comparing results

across multiple treatment groups you might ask multiple questions. So, for

treatments A–C, you might ask:

Is A different from B?

Is B different from C?

Is A different from C?

Or, in a clinical trial, you might want to look at results from a therapy at

multiple stages. In each case, you are asking multiple questions, and with

each question, you are increasing the chance of being fooled by chance.

Adjustment procedures in statistics can compensate for this by setting the

bar for statistical significance more stringently than it would be set for a

single hypothesis test. These adjustment procedures typically involve

“dividing up the alpha” according to the number of tests. This results in a

smaller alpha (i.e., a more stringent bar for statistical significance) for each

test. One such procedure, the Bonferroni adjustment, simply divides the

alpha by the number of observations n.

However, the problem of multiple comparisons goes beyond these highly

structured cases and is related to the phenomenon of repeated data

“dredging” that gives rise to the saying about torturing the data. Put another

way, given sufficiently complex data, if you haven’t found something

interesting, you simply haven’t looked long and hard enough. More data is

available now than ever before, and the number of journal articles

published nearly doubled between 2002 and 2010. This gives rise to lots of

opportunities to find something interesting in the data, including



multiplicity issues such as:

Checking for multiple pairwise differences across groups

Looking at multiple subgroup results (“we found no significant

treatment effect overall, but we did find an effect for unmarried women

younger than 30”)

Trying lots of statistical models

Including lots of variables in models

Asking a number of different questions (i.e., different possible

outcomes)

False Discovery Rate

The term false discovery rate was originally used to describe the rate at

which a given set of hypothesis tests would falsely identify a significant

effect. It became particularly useful with the advent of genomic research, in

which massive numbers of statistical tests might be conducted as part of a

gene sequencing project. In these cases, the term applies to the testing

protocol, and a single false “discovery” refers to the outcome of a

hypothesis test (e.g., between two samples). Researchers sought to set the

parameters of the testing process to control the false discovery rate at a

specified level. The term has also been used in the data mining community

in a classification context, in which a false discovery is a mislabeling of a

single record—in particular the mislabeling of 0s as 1s (see Chapter 5 and

“The Rare Class Problem”).

For a variety of reasons, including especially this general issue of

“multiplicity,” more research does not necessarily mean better research. For

example, the pharmaceutical company Bayer found in 2011 that when it

tried to replicate 67 scientific studies, it could fully replicate only 14 of

them. Nearly two-thirds could not be replicated at all.



In any case, the adjustment procedures for highly defined and structured

statistical tests are too specific and inflexible to be of general use to data

scientists. The bottom line for data scientists on multiplicity is:

For predictive modeling, the risk of getting an illusory model whose

apparent efficacy is largely a product of random chance is mitigated by

cross-validation (see “Cross-Validation”), and use of a holdout sample.

For other procedures without a labeled holdout set to check the model,

you must rely on:

Awareness that the more you query and manipulate the data, the

greater the role that chance might play; and

Resampling and simulation heuristics to provide random chance

benchmarks against which observed results can be compared.

Key Ideas

Multiplicity in a research study or data mining project (multiple

comparisons, many variables, many models, etc.) increases the risk

of concluding that something is significant just by chance.

For situations involving multiple statistical comparisons (i.e.,

multiple tests of significance) there are statistical adjustment

procedures.

In a data mining situation, use of a holdout sample with labeled

outcome variables can help avoid misleading results.

Further Reading

1. For a short exposition of one procedure (Dunnett’s) to adjust for



multiple comparisons, see David Lane’s online statistics text.

2. Megan Goldman offers a slightly longer treatment of the Bonferroni

adjustment procedure.

3. For an in-depth treatment of more flexible statistical procedures to

adjust p-values, see Resampling-Based Multiple Testing by Peter

Westfall and Stanley Young (Wiley, 1993).

4. For a discussion of data partitioning and the use of holdout samples in

predictive modeling, see Data Mining for Business Analytics, Chapter 2,

by Galit Shmueli, Peter Bruce, and Nitin Patel (Wiley, 2016).

Degrees of Freedom

In the documentation and settings to many statistical tests, you will see

reference to “degrees of freedom.” The concept is applied to statistics

calculated from sample data, and refers to the number of values free to

vary. For example, if you know the mean for a sample of 10 values, and

you also know 9 of the values, you also know the 10th value. Only 9 are

free to vary.

Key Terms

n or sample size

The number of observations (also called rows or records) in the

data.

d.f.

Degrees of freedom.

The number of degrees of freedom is an input to many statistical tests. For

example, degrees of freedom is the name given to the n – 1 denominator



seen in the calculations for variance and standard deviation. Why does it

matter? When you use a sample to estimate the variance for a population,

you will end up with an estimate that is slightly biased downward if you

use n in the denominator. If you use n – 1 in the denominator, the estimate

will be free of that bias.

A large share of a traditional statistics course or text is consumed by

various standard tests of hypotheses (t-test, F-test, etc.). When sample

statistics are standardized for use in traditional statistical formulas, degrees

of freedom is part of the standardization calculation to ensure that your

standardized data matches the appropriate reference distribution (t-

distribution, F-distribution, etc.).

Is it important for data science? Not really, at least in the context of

significance testing. For one thing, formal statistical tests are used only

sparingly in data science. For another, the data size is usually large enough

that it rarely makes a real difference for a data scientist whether, for

example, the denominator has n or n – 1.

There is one context, though, in which it is relevant: the use of factored

variables in regression (including logistic regression). Regression

algorithms choke if exactly redundant predictor variables are present. This

most commonly occurs when factoring categorical variables into binary

indicators (dummies). Consider day of week. Although there are seven days

of the week, there are only six degrees of freedom in specifying day of

week. For example, once you know that day of week is not Monday

through Saturday, you know it must be Sunday. Inclusion of the Mon–Sat

indicators thus means that also including Sunday would cause the

regression to fail, due to a multicollinearity error.



Key Ideas

The number of degrees of freedom (d.f.) forms part of the

calculation to standardize test statistics so they can be compared to

reference distributions (t-distribution, F-distribution, etc.).

The concept of degrees of freedom lies behind the factoring of

categorical variables into n – 1 indicator or dummy variables when

doing a regression (to avoid multicollinearity).

Further Reading

There are several web tutorials on degrees of freedom.

ANOVA

Suppose that, instead of an A/B test, we had a comparison of multiple

groups, say A-B-C-D, each with numeric data. The statistical procedure

that tests for a statistically significant difference among the groups is called

analysis of variance, or ANOVA.



Key Terms for ANOVA

Pairwise comparison

A hypothesis test (e.g., of means) between two groups among

multiple groups.

Omnibus test

A single hypothesis test of the overall variance among multiple

group means.

Decomposition of variance

Separation of components. contributing to an individual value

(e.g., from the overall average, from a treatment mean, and from a

residual error).

F-statistic

A standardized statistic that measures the extent to which

differences among group means exceeds what might be expected

in a chance model.

SS

“Sum of squares,” referring to deviations from some average

value.

Table 3-3 shows the stickiness of four web pages, in numbers of seconds

spent on the page. The four pages are randomly switched out so that each

web visitor receives one at random. There are a total of five visitors for

each page, and, in Table 3-3, each column is an independent set of data.

The first viewer for page 1 has no connection to the first viewer for page 2.

Note that in a web test like this, we cannot fully implement the classic

randomized sampling design in which each visitor is selected at random



from some huge population. We must take the visitors as they come.

Visitors may systematically differ depending on time of day, time of week,

season of the year, conditions of their internet, what device they are using,

and so on. These factors should be considered as potential bias when the

experiment results are reviewed.

Table 3-3. Stickiness (in seconds) for four

web pages

Page
1
Page

2 Page 3
Page

4

164 178 175 155

172 191 193 166

177 182 171 164

156 185 163 170

195 177 176 168

Average 172 185 176 162

Grand average 173.75

Now, we have a conundrum (see Figure 3-6). When we were comparing

just two groups, it was a simple matter; we merely looked at the difference

between the means of each group. With four means, there are six possible

comparisons between groups:

Page 1 compared to page 2

Page 1 compared to page 3

Page 1 compared to page 4



Page 2 compared to page 3

Page 2 compared to page 4

Page 3 compared to page 4

Figure 3-6. Boxplots of the four groups show considerable differences among them

The more such pairwise comparisons we make, the greater the potential for

being fooled by random chance (see “Multiple Testing”). Instead of



worrying about all the different comparisons between individual pages we

could possibly make, we can do a single overall omnibus test that addresses

the question, “Could all the pages have the same underlying stickiness, and

the differences among them be due to the random way in which a common

set of session times got allocated among the four pages?”

The procedure used to test this is ANOVA. The basis for it can be seen in

the following resampling procedure (specified here for the A-B-C-D test of

web page stickiness):

1. Combine all the data together in a single box

2. Shuffle and draw out four resamples of five values each

3. Record the mean of each of the four groups

4. Record the variance among the four group means

5. Repeat steps 2–4 many times (say 1,000)

What proportion of the time did the resampled variance exceed the

observed variance? This is the p-value.

This type of permutation test is a bit more involved than the type used in

“Permutation Test”. Fortunately, the aovp function in the lmPerm package

computes a permutation test for this case:

> library(lmPerm)

> summary(aovp(Time ~ Page, data=four_sessions))

[1] "Settings: unique SS "

Component 1 :

Df R Sum Sq R Mean Sq Iter Pr(Prob)

Page 3 831.4 277.13 3104 0.09278 .

Residuals 16 1618.4 101.15

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



The p-value, given by Pr(Prob), is 0.09278. The column Iter lists the

number of iterations taken in the permutation test. The other columns

correspond to a traditional ANOVA table and are described next.

F-Statistic

Just like the t-test can be used instead of a permutation test for comparing

the mean of two groups, there is a statistical test for ANOVA based on the

F-statistic. The F-statistic is based on the ratio of the variance across group

means (i.e., the treatment effect) to the variance due to residual error. The

higher this ratio, the more statistically significant the result. If the data

follows a normal distribution, then statistical theory dictates that the

statistic should have a certain distribution. Based on this, it is possible to

compute a p-value.

In R, we can compute an ANOVA table using the aov function:

> summary(aov(Time ~ Page, data=four_sessions))

Df Sum Sq Mean Sq F value Pr(>F)

Page 3 831.4 277.1 2.74 0.0776 .

Residuals 16 1618.4 101.2

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Df is “degrees of freedom,” Sum Sq is “sum of squares,” Mean Sq is “mean

squares” (short for mean-squared deviations), and F value is the F

statistic. For the grand average, sum of squares is the departure of the grand

average from 0, squared, times 20 (the number of observations). The

degrees of freedom for the grand average is 1, by definition. For the

treatment means, the degrees of freedom is 3 (once three values are set, and

then the grand average is set, the other treatment mean cannot vary). Sum

of squares for the treatment means is the sum of squared departures

between the treatment means and the grand average. For the residuals,

degrees of freedom is 20 (all observations can vary), and SS is the sum of

squared difference between the individual observations and the treatment



means. Mean squares (MS) is the sum of squares divided by the degrees of

freedom. The F-statistic is MS(treatment)/MS(error). The F value thus

depends only on this ratio, and can be compared to a standard F distribution

to determine whether the differences among treatment means is greater than

would be expected in random chance variation.

Decomposition of Variance

Observed values in a data set can be considered sums of different

components. For any observed data value within a data set, we can break it

down into the grand average, the treatment effect, and the residual error.

We call this a “decomposition of variance.”

1. Start with grand average (173.75 for web page stickiness data).

2. Add treatment effect, which might be negative (independent variable =

web page).

3. Add residual error, which might be negative.

Thus, the decomposition of the variance for the top-left value in the A-B-C-

D test table is as follows:

1. Start with grand average: 173.75

2. Add treatment (group) effect: –1.75 (172–173.75).

3. Add residual: –8 (164–172).

4. Equals: 164.

Two-Way ANOVA

The A-B-C-D test just described is a “one-way” ANOVA, in which we

have one factor (group) that is varying. We could have a second factor

involved—say, “weekend versus weekday”—with data collected on each

combination (group A weekend, group A weekday, group B weekend, etc.).



This would be a “two-way ANOVA,” and we would handle it in similar

fashion to the one-way ANOVA by identifying the “interaction effect.”

After identifying the grand average effect, and the treatment effect, we then

separate the weekend and the weekday observations for each group, and

find the difference between the averages for those subsets and the treatment

average.

You can see that ANOVA, then two-way ANOVA, are the first steps on the

road toward a full statistical model, such as regression and logistic

regression, in which multiple factors and their effects can be modeled (see

Chapter 4).

Key Ideas

ANOVA is a statistical proecdure for analyzing the results of an

experiment with multiple groups.

It is the extension of similar procedures for the A/B test, used to

assess whether the overall variation among groups is within the

range of chance variation.

A useful outcome of an ANOVA is the identification of variance

components associated with group treatments, interaction effects,

and errors.

Further Reading

1. Introductory Statistics: A Resampling Perspective by Peter Bruce

(Wiley, 2014) has a chapter on ANOVA.

2. Introduction to Design and Analysis of Experiments by George Cobb

(Wiley, 2008) is a comprehensive and readable treatment of its subject.



Chi-Square Test

Web testing often goes beyond A/B testing and tests multiple treatments at

once. The chi-square test is used with count data to test how well it fits

some expected distribution. The most common use of the chi-square

statistic in statistical practice is with contingency tables, to assess

whether the null hypothesis of independence among variables is reasonable.

The chi-square test was originally developed by Karl Pearson in 1900. The

term “chi” comes from the greek letter used by Pearson in the article.

Key Terms

Chi-square statistic

A measure of the extent to which some observed data departs from

expectation.

Expectation or expected

How we would expect the data to turn out under some assumption,

typically the null hypothesis.

d.f.

Degrees of freedom.

Note

means “rows by columns”—a 2×3 table has two rows and three

columns.

Chi-Square Test: A Resampling Approach

Suppose you are testing three different headlines—A, B, and C—and you

run them each on 1,000 visitors, with the results shown in Table 3-4.



Table 3-4. Web testing results of three

different headlines

Headline A Headline B Headline C

Click 14 8 12

No-click 986 992 988

The headlines certainly appear to differ. Headline A returns nearly twice

the click rate of B. The actual numbers are small, though. A resampling

procedure can test whether the click rates differ to an extent greater than

chance might cause. For this test, we need to have the “expected”

distribution of clicks, and, in this case, that would be under the null

hypothesis assumption that all three headlines share the same click rate, for

an overall click rate of 34/3,000. Under this assumption, our contingency

table would look like Table 3-5.

Table 3-5. Expected if all three headlines

have the same click rate (null hypothesis)

Headline A Headline B Headline C

Click 11.33 11.33 11.33

No-click 988.67 988.67 988.67

The Pearson residual is defined as:



R measures the extent to which the actual counts differ from these expected

counts (see Table 3-6).

Table 3-6. Pearson residuals

Headline A Headline B Headline C

Click 0.792 -0.990 0.198

No-click -0.085 0.106 -0.021

The chi-squared statistic is defined as the sum of the squared Pearson

residuals:

where r and c are the number of rows and columns, respectively. The chi

squared statistic for this example is 1.666. Is that more than could

reasonably occur in a chance model?

We can test with this resampling algorithm:

1. Constitute a box with 34 ones (clicks) and 2,966 zeros (no clicks).

2. Shuffle, take three separate samples of 1,000, and count the clicks in

each.

3. Find the squared differences between the shuffled counts and the



expected counts, and sum them.

4. Repeat steps 2 and 3, say, 1,000 times.

5. How often does the resampled sum of squared deviations exceed the

observed? That’s the p-value.

The function chisq.test can be used to compute a resampled chi-square

statistic. For the click data, the chi-square test is:

> chisq.test(clicks, simulate.p.value=TRUE)

Pearson's Chi-squared test with simulated p-value (based

on 2000 replicates)

data: clicks

X-squared = 1.6659, df = NA, p-value = 0.4853

The test shows that this result could easily have been obtained by

randomness.

Chi-Squared Test: Statistical Theory

Asymptotic statistical theory shows that the distribution of the chi-squared

statistic can be approximated by a chi-square distribution. The appropriate

standard chi-square distribution is determined by the degrees of freedom

(see “Degrees of Freedom”). For a contingency table, the degrees of

freedom are related to the number of rows (r) and columns (s) as follows:

The chi-square distribution is typically skewed, with a long tail to the right;

see Figure 3-7 for the distribution with 1, 2, 5, and 10 degrees of freedom.

The further out on the chi-square distribution the observed statistic is, the

lower the p-value.

The function chisq.test can be used to compute the p-value using the chi



squared distribution as a reference:

> chisq.test(clicks, simulate.p.value=FALSE)

Pearson's Chi-squared test

data: clicks

X-squared = 1.6659, df = 2, p-value = 0.4348

The p-value is a little less than the resampling p-value: this is because the

chi-square distribution is only an approximation of the actual distribution of

the statistic.

Figure 3-7. Chi-square distribution with various degrees of freedom (probability on

y-axis, value of chi-square statistic on x-axis)

Fisher’s Exact Test

The chi-square distribution is a good approximation of the shuffled

resampling test just described, except when counts are extremely low



(single digits, especially five or fewer). In such cases, the resampling

procedure will yield more accurate p-values. In fact, most statistical

software has a procedure to actually enumerate all the possible

rearrangements (permutations) that can occur, tabulate their frequencies,

and determine exactly how extreme the observed result is. This is called

Fisher’s exact test after the great statistician R. A. Fisher. R code for

Fisher’s exact test is simple in its basic form:

> fisher.test(clicks)

Fisher's Exact Test for Count Data

data: clicks

p-value = 0.4824

alternative hypothesis: two.sided

The p-value is very close to the p-value of 0.4853 obtained using the

resampling method.

Where some counts are very low but others are quite high (e.g., the

denominator in a conversion rate), it may be necessary to do a shuffled

permutation test instead of a full exact test, due to the difficulty of

calculating all possible permutations. The preceding R function has several

arguments that control whether to use this approximation

(simulate.p.value=TRUE or FALSE), how many iterations should be

used (B=...), and a computational constraint (workspace=...) that limits

how far calculations for the exact result should go.

Detecting Scientific Fraud

An interesting example is provided by Tufts University researcher

Thereza Imanishi-Kari, who was accused in 1991 of fabricating data in

her research. Congressman John Dingell became involved, and the

case eventually led to the resignation of her colleague, David



Baltimore, from the presidency of Rockefeller University.

Imanishi-Kari was ultimately exonerated after a lengthy proceeding.

However, one element in the case rested on statistical evidence

regarding the expected distribution of digits in her laboratory data,

where each observation had many digits. Investigators focused on the

interior digits, which would be expected to follow a uniform random

distribution. That is, they would occur randomly, with each digit

having equal probability of occurring (the lead digit might be

predominantly one value, and the final digits might be affected by

rounding). Table 3-7 lists the frequencies of interior digits from the

actual data in the case.



Table 3-7.

Central digit in

laboratory data

Digit
Frequency

0 141 71

2 7

3 65

4 23

5 19

6 12

7 45

8 53

9 6

The distribution of the 315 digits, shown in Figure 3-8 certainly looks

nonrandom:

Investigators calculated the departure from expectation (31.5—that’s

how often each digit would occur in a strictly uniform distribution)

and used a chi-square test (a resampling procedure could equally have

been used) to show that the actual distribution was well beyond the

range of normal chance variation.



Figure 3-8. Frequency histogram for Imanishi-Kari lab data

Relevance for Data Science

Most standard uses of the chi-square test, or Fisher’s exact test, are not

terribly relevant for data science. In most experiments, whether A-B or A

B-C…, the goal is not simply to establish statistical significance, but rather

to arive at the best treatment. For this purpose, multi-armed bandits (see

“Multi-Arm Bandit Algorithm”) offer a more complete solution.



One data science application of the chi-square test, especially Fisher’s exact

version, is in determining appropriate sample sizes for web experiments.

These experiments often have very low click rates and, despite thousands of

exposures, count rates might be too small to yield definitive conclusions in

an experiment. In such cases, Fisher’s exact test, the chi-square test, and

other tests can be useful as a component of power and sample size

calculations (see “Power and Sample Size”).

Chi-square tests are used widely in research by investigators in search of

the elusive statistically significant p-value that will allow publication. Chi

square tests, or similar resampling simulations, are used in data science

applications more as a filter to determine whether an effect or feature is

worthy of further consideration than as a formal test of significance. For

example, they are used in spatial statistics and mapping to determine

whether spatial data conforms to a specified null distribution (e.g., are

crimes concentrated in a certain area to a greater degree than random

chance would allow?). They can also be used in automated feature selection

in machine learning, to assess class prevalence across features and identify

features where the prevalence of a certain class is unusually high or low, in

a way that is not compatible with random variation.

Key Ideas

A common procedure in statistics is to test whether observed data

counts are consistent with an assumption of independence (e.g.,

propensity to buy a particular item is independent of gender).

The chi-square distribution is the reference distribution (which

embodies the assumption of independence) to which the observed

calculated chi-square statistic must be compared.



Further Reading

R. A. Fisher’s famous “Lady Tasting Tea” example from the beginning

of the 20th century remains a simple and effective illustration of his

exact test. Google “Lady Tasting Tea,” and you will find a number of

good writeups.

Stat Trek offers a good tutorial on the chi-square test.

Multi-Arm Bandit Algorithm

Multi-arm bandits offer an approach to testing, especially web testing, that

allows explicit optimization and more rapid decision making than the

traditional statistical approach to designing experiments.

Key Terms

Multi-arm bandit

An imaginary slot machine with multiple arms for the customer to

choose from, each with different payoffs, here taken to be an

analogy for a multitreatment experiment.

Arm

A treatment in an experiment (e.g., “headline A in a web test”).

Win

The experimental analog of a win at the slot machine (e.g.,

“customer clicks on the link”).

A traditional A/B test involves data collected in an experiment, according

to a specified design, to answer a specific question such as, “Which is

better, treatment A or treatment B?” The presumption is that once we get an

answer to that question, the experimenting is over and we proceed to act on



the results.

You can probably perceive several difficulties with that approach. First, our

answer may be inconclusive: “effect not proven.” In other words, the

results from the experiment may suggest an effect, but if there is an effect,

we don’t have a big enough sample to prove it (to the satisfaction of the

traditional statistical standards). What decision do we take? Second, we

might want to begin taking advantage of results that come in prior to the

conclusion of the experiment. Third, we might want the right to change our

minds or to try something different based on additional data that comes in

after the experiment is over. The traditional approach to experiments and

hypothesis tests dates from the 1920s, and is rather inflexible. The advent

of computer power and software has enabled more powerful flexible

approaches. Moreover, data science (and business in general) is not so

worried about statistical significance, but more concerned with optimizing

overall effort and results.

Bandit algorithms, which are very popular in web testing, allow you to test

multiple treatments at once and reach conclusions faster than traditional

statistical designs. They take their name from slot machines used in

gambling, also termed one-armed bandits (since they are configured in such

a way that they extract money from the gambler in a steady flow). If you

imagine a slot machine with more than one arm, each arm paying out at a

different rate, you would have a multi-armed bandit, which is the full name

for this algorithm.

Your goal is to win as much money as possible, and more specifically, to

identify and settle on the winning arm sooner rather than later. The

challenge is that you don’t know at what rate the arms pay out—you only

know the results of pulling the arm. Suppose each “win” is for the same

amount, no matter which arm. What differs is the probability of a win.

Suppose further that you initially try each arm 50 times and get the

following results:



Arm A: 10 wins out of 50

Arm B: 2 win out of 50

Arm C: 4 wins out of 50

One extreme approach is to say, “Looks like arm A is a winner—let’s quit

trying the other arms and stick with A.” This takes full advantage of the

information from the initial trial. If A is truly superior, we get the benefit of

that early on. On the other hand, if B or C is truly better, we lose any

opportunity to discover that. Another extreme approach is to say, “This all

looks to be within the realm of chance—let’s keep pulling them all

equally.” This gives maximum opportunity for alternates to A to show

themselves. However, in the process, we are deploying what seem to be

inferior treatments. How long do we permit that? Bandit algorithms take a

hybrid approach: we start pulling A more often, to take advantage of its

apparent superiority, but we don’t abandon B and C. We just pull them less

often. If A continues to outperform, we continue to shift resources (pulls)

away from B and C and pull A more often. If, on the other hand, C starts to

do better, and A starts to do worse, we can shift pulls from A back to C. If

one of them turns out to be superior to A and this was hidden in the initial

trial due to chance, it now has an opportunity to emerge with further

testing.

Now think of applying this to web testing. Instead of multiple slot machine

arms, you might have multiple offers, headlines, colors, and so on, being

tested on a website. Customers either click (a “win” for the merchant) or

don’t click. Initially, the offers are shown randomly and equally. If,

however, one offer starts to outperform the others, it can be shown

(“pulled”) more often. But what should the parameters of the algorithm that

modifies the pull rates be? What “pull rates” should we change to, and

when should we change?



Here is one simple algorithm, the epsilon-greedy algorithm for an A/B test:

1. Generate a random number between 0 and 1.

2. If the number lies between 0 and epsilon (where epsilon is a number

between 0 and 1, typically fairly small), flip a fair coin (50/50

probability), and:

a. If the coin is heads, show offer A.

b. If the coin is tails, show offer B.

3. If the number is ≥ epsilon, show whichever offer has had the highest

response rate to date.

Epsilon is the single parameter that governs this algorithm. If epsilon is 1,

we end up with a standard simple A/B experiment (random allocation

between A and B for each subject). If epsilon is 0, we end up with a purely

greedy algorithm—it seeks no further experimentation, simply assigning

subjects (web visitors) to the best-performing treatment.

A more sophisticated algorithm uses “Thompson’s sampling.” This

procedure “samples” (pulls a bandit arm) at each stage to maximize the

probability of choosing the best arm. Of course you don’t know which is

the best arm—that’s the whole problem!—but as you observe the payoff

with each successive draw, you gain more information. Thompson’s

sampling uses a Bayesian approach: some prior distribution of rewards is

assumed initially, using what is called a beta distribution (this is a common

mechanism for specifying prior information in a Bayesian problem). As

information accumulates from each draw, this information can be updated,

allowing the selection of the next draw to be better optimized as far as

choosing the right arm.

Bandit algorithms can efficiently handle 3+ treatments and move toward

optimal selection of the “best.” For traditional statistical testing procedures,



the complexity of decision making for 3+ treatments far outstrips that of the

traditional A/B test, and the advantage of bandit algorithms is much greater.

Key Ideas

Traditional A/B tests envision a random sampling process, which

can lead to excessive exposure to the inferior treatment.

Multi-arm bandits, in contrast, alter the sampling process to

incorporate information learned during the experiment and reduce

the frequency of the inferior treatment.

They also facilitate efficient treatment of more than two treatments.

There are different algorithms for shifting sampling probability

away from the inferior treatment(s) and to the (presumed) superior

one.

Further Reading

An excellent short treatment of multi-arm bandit algorithms is found in

Bandit Algorithms, by John Myles White (O’Reilly, 2012). White

includes Python code, as well as the results of simulations to assess the

performance of bandits.

For more (somewhat technical) information about Thompson sampling,

see “Analysis of Thompson Sampling for the Multi-armed Bandit

Problem” by Shipra Agrawal and Navin Goyal.

Power and Sample Size

If you run a web test, how do you decide how long it should run (i.e., how

many impressions per treatment are needed)? Despite what you may read in

many guides to web testing on the web, there is no good general guidance



—it depends, mainly, on the frequency with which the desired goal is

attained.

Key Terms

Effect size

The minimum size of the effect that you hope to be able to detect

in a statistical test, such as “a 20% improvement in click rates”.

Power

The probability of detecting a given effect size with a given

sample size.

Significance level

The statistical significance level at which the test will be

conducted.

One step in statistical calculations for sample size is to ask “Will a

hypothesis test actually reveal a difference between treatments A and B?”

The outcome of a hypothesis test—the p-value—depends on what the real

difference is between treatment A and treatment B. It also depends on the

luck of the draw—who gets selected for the groups in the experiment. But it

makes sense that the bigger the actual difference between treatments A and

B, the greater the probability that our experiment will reveal it; and the

smaller the difference, the more data will be needed to detect it. To

distinguish between a .350 hitter in baseball, and a .200 hitter, not that

many at-bats are needed. To distinguish between a .300 hitter and a .280

hitter, a good many more at-bats will be needed.

Power is the probability of detecting a specified effect size with specified

sample characteristics (size and variability). For example, we might say



(hypothetically) that the probability of distinguishing between a .330 hitter

and a .200 hitter in 25 at-bats is 0.75. The effect size here is a difference of

.130. And “detecting” means that a hypothesis test will reject the null

hypothesis of “no difference” and conclude there is a real effect. So the

experiment of 25 at-bats (n = 25) for two hitters, with an effect size of

0.130, has (hypothetical) power of 0.75 or 75%.

You can see that there are several moving parts here, and it is easy to get

tangled up with the numerous statistical assumptions and formulas that will

be needed (to specify sample variability, effect size, sample size, alpha

level for the hypothesis test, etc., and to calculate power). Indeed, there is

special-purpose statistical software to calculate power. Most data scientists

will not need to go through all the formal steps needed to report power, for

example, in a published paper. However, they may face occasions where

they want to collect some data for an A/B test, and collecting or processing

the data involves some cost. In that case, knowing approximately how

much data to collect can help avoid the situation where you collect data at

some effort, and the result ends up being inconclusive. Here’s a fairly

intuitive alternative approach:

1. Start with some hypothetical data that represents your best guess about

the data that will result (perhaps based on prior data)—for example, a

box with 20 ones and 80 zeros to represent a .200 hitter, or a box with

some observations of “time spent on website.”

2. Create a second sample simply by adding the desired effect size to the

first sample—for example, a second box with 33 ones and 67 zeros, or a

second box with 25 seconds added to each initial “time spent on

website.”

3. Draw a bootstrap sample of size n from each box.

4. Conduct a permutation (or formula-based) hypothesis test on the two

bootstrap samples and record whether the difference between them is



statistically significant.

5. Repeat the preceding two steps many times and determine how often the

difference was significant—that’s the estimated power.

Sample Size

The most common use of power calculations is to estimate how big a

sample you will need.

For example, suppose you are looking at click-through rates (clicks as a

percentage of exposures), and testing a new ad against an existing ad. How

many clicks do you need to accumulate in the study? If you are only

interested in results that show a huge difference (say a 50% difference), a

relatively small sample might do the trick. If, on the other hand, even a

minor difference would be of interest, then a much larger sample is needed.

A standard approach is to establish a policy that a new ad must do better

than an existing ad by some percentage, say 10%; otherwise, the existing ad

will remain in place. This goal, the “effect size,” then drives the sample

size.

For example, suppose current click-through rates are about 1.1%, and you

are seeking a 10% boost to 1.21%. So we have two boxes, box A with 1.1%

ones (say 110 ones and 9,890 zeros), and box B with 1.21% ones (say 121

ones and 9,879 zeros). For starters, let’s try 300 draws from each box (this

would be like 300 “impressions” for each ad). Suppose our first draw yields

the following:

Box A: 3 ones

Box B: 5 ones

Right away we can see that any hypothesis test would reveal this difference

(5 versus 3) to be well within the range of chance variation. This



combination of sample size (n = 300 in each group) and effect size (10%

difference) is too small for any hypothesis test to reliably show a

difference.

So we can try increasing the sample size (let’s try 2,000 impressions), and

require a larger improvement (30% instead of 10%).

For example, suppose current click-through rates are still 1.1%, but we are

now seeking a 50% boost to 1.65%. So we have two boxes: box A still with

1.1% ones (say 110 ones and 9,890 zeros), and box B with 1.65% ones (say

165 ones and 9,868 zeros). Now we’ll try 2,000 draws from each box.

Suppose our first draw yields the following:

Box A: 19 ones

Box B: 34 ones

A significance test on this difference (34–19) shows it still registers as “not

significant” (though much closer to significance than the earlier difference

of 5–3). To calculate power, we would need to repeat the previous

procedure many times, or use statistical software that can calculate power,

but our initial draw suggests to us that even detecting a 50% improvement

will require several thousand ad impressions.

In summary, for calculating power or required sample size, there are four

moving parts:

Sample size

Effect size you want to detect

Significance level (alpha) at which the test will be conducted

Power



Specify any three of them, and the fourth can be calculated. Most

commonly, you would want to calculate sample size, so you must specify

the other three. Here is R code for a test involving two proportions, where

both samples are the same size (this uses the pwr package):

pwr.2p.test(h = ..., n = ..., sig.level = ..., power = )

h= effect size (as a proportion)

n = sample size

sig.level = the significance level (alpha) at which the test will

be conducted

power = power (probability of detecting the effect size)

Key Ideas

Finding out how big a sample size you need requires thinking

ahead to the statistical test you plan to conduct.

You must specify the minimum size of the effect that you want to

detect.

You must also specify the required probability of detecting that

effect size (power).

Finally, you must specify the significance level (alpha) at which the

test will be conducted.

Further Reading

1. Sample Size Determination and Power, by Tom Ryan (Wiley, 2013), is

a comprehensive and readable review of this subject.

2. Steve Simon, a statistical consultant, has written a very engaging

narrative-style post on the subject.



Summary

The principles of experimental design—randomization of subjects into two

or more groups receiving different treatments—allow us to draw valid

conclusions about how well the treatments work. It is best to include a

control treatment of “making no change.” The subject of formal statistical

inference—hypothesis testing, p-values, t-tests, and much more along these

lines—occupies much time and space in a traditional statistics course or

text, and the formality is mostly unneeded from a data science perspective.

However, it remains important to recognize the role that random variation

can play in fooling the human brain. Intuitive resampling procedures

(permutation and bootstrap) allow data scientists to gauge the extent to

which chance variation can play a role in their data analysis.

1 The multiplication rule states that the probability of n independent events

all happening is the product of the individual probabilities. For example, if

you and I each flip a coin once, the probability that your coin and my coin

will both land heads is 0.5 × 0.5 = 0.25.



Chapter 4. Regression and Prediction

Perhaps the most common goal in statistics is to answer the question: Is the

variable X (or more likely, ) associated with a variable Y,

and, if so, what is the relationship and can we use it to predict Y?

Nowhere is the nexus between statistics and data science stronger than in

the realm of prediction—specifically the prediction of an outcome (target)

variable based on the values of other “predictor” variables. Another

important connection is in the area of anomaly detection, where regression

diagnostics originally intended for data analysis and improving the

regression model can be used to detect unusual records. The antecedents of

correlation and linear regression date back over a century.

Simple Linear Regression

Simple linear regression models the relationship between the magnitude of

one variable and that of a second—for example, as X increases, Yalso

increases. Or as X increases, Y decreases. Correlation is another way to

measure how two variables are related: see the section “Correlation”. The

difference is that while correlation measures the strength of an association

between two variables, regression quantifies the nature of the relationship.

1

Key Terms for Simple Linear Regression

Response

The variable we are trying to predict.

Synonyms

dependent variable, Y-variable, target, outcome

Independent variable

The variable used to predict the response.

Synonyms



independent variable, X-variable, feature, attribute

Record

The vector of predictor and outcome values for a specific

individual or case.

Synonyms

row, case, instance, example

Intercept

The intercept of the regression line—that is, the predicted value

when .

Synonyms

,

Regression coefficient

The slope of the regression line.

Synonyms

slope, , parameter estimates, weights,

Fitted values

The estimates obtained from the regression line.

Synonyms

predicted values

Residuals

The difference between the observed values and the fitted values.



Synonyms

errors

Least squares

The method of fitting a regression by minimizing the sum of

squared residuals.

Synonyms

ordinary least squares

The Regression Equation

Simple linear regression estimates exactly how much Y will change when X

changes by a certain amount. With the correlation coefficient, the variables

X and Y are interchangable. With regression, we are trying to predict the Y

variable from X using a linear relationship (i.e., a line):

We read this as “Y equals b times X, plus a constant b.” The symbol1 0

asis known as the intercept (or constant), and the symbol the slope for

X. Both appear in R output as coefficients, though in general use the term

coefficient is often reserved for . The Y variable is known as the

response or dependent variable since it depends on X. The X variable is

known as the predictor or independent variable. The machine learning

community tends to use other terms, calling Y the target and X a feature

vector.

Consider the scatterplot in Figure 4-1 displaying the number of years a



worker was exposed to cotton dust (Exposure) versus a measure of lung

capacity (PEFR or “peak expiratory flow rate”). How is PEFR related to

Exposure? It’s hard to tell just based on the picture.

Figure 4-1. Cotton exposure versus lung capacity

Simple linear regression tries to find the “best” line to predict the response

PEFR as a function of the predictor variable Exposure.



The lm function in R can be used to fit a linear regression.

model <- lm(PEFR ~ Exposure, data=lung)

lm standards for linear model and the ~ symbol denotes that PEFR is

predicted by Exposure.

Printing the model object produces the following output:

Call:

lm(formula = PEFR ~ Exposure, data = lung)

Coefficients:

(Intercept) Exposure

424.583 -4.185

, is 424.583 and can be interpreted as the predicted

PEFR for a worker with zero years exposure. The regression coefficient, or

, can be interpreted as follows: for each additional year that a worker is

exposed to cotton dust, the worker’s PEFR measurement is reduced by –

4.185.

The intercept, or

The regression line from this model is displayed in Figure 4-2.



Figure 4-2. Slope and intercept for the regression fit to the lung data

Fitted Values and Residuals

Important concepts in regression analysis are the fitted values and

residuals. In general, the data doesn’t fall exactly on a line, so the

regression equation should include an explicit error term :

The fitted values, also referred to as the predicted values, are typically

denoted by (Y-hat). These are given by:



indicatesThe notation that the coefficients are estimated versusand

known.

Hat Notation: Estimates Versus Known Values

The “hat” notation is used to differentiate between estimates and known

values. So the symbol. Why do statisticians differentiate between the estimate and the true

value? The estimate has uncertainty, whereas the true value is fixed.
2

(“b-hat”) is an estimate of the unknown parameter

We compute the residuals by subtracting the predicted values from the

original data:

In R, we can obtain the fitted values and residuals using the functions

predict and residuals:

fitted <- predict(model)

resid <- residuals(model)

Figure 4-3 illustrates the residuals from the regression line fit to the lung

data. The residuals are the length of the vertical dashed lines from the data

to the line.



Figure 4-3. Residuals from a regression line (note the different y-axis scale from

Figure 4-2, hence the apparently different slope)

Least Squares

How is the model fit to the data? When there is a clear relationship, you

could imagine fitting the line by hand. In practice, the regression line is the

estimate that minimizes the sum of squared residual values, also called the

residual sum of squares or RSS:



areThe estimates the values that minimize RSS.and

The method of minimizing the sum of the squared residuals is termed least

squares regression, or ordinary least squares (OLS) regression. It is often

attributed to Carl Friedrich Gauss, the German mathmetician, but was first

published by the French mathmetician Adrien-Marie Legendre in 1805.

Least squares regression leads to a simple formula to compute the

coefficients:

Historically, computational convenience is one reason for the widespread



use of least squares in regression. With the advent of big data,

computational speed is still an important factor. Least squares, like the

mean (see “Median and Robust Estimates”), are sensitive to outliers,

although this tends to be a signicant problem only in small or moderate

sized problems. See “Outliers” for a discussion of outliers in regression.

Regression Terminology

When analysts and researchers use the term regression by itself, they are

typically referring to linear regression; the focus is usually on developing a

linear model to explain the relationship between predictor variables and a

numeric outcome variable. In its formal statistical sense, regression also

includes nonlinear models that yield a functional relationship between

predictors and outcome variables. In the machine learning community, the

term is also occasionally used loosely to refer to the use of any predictive

model that produces a predicted numeric outcome (standing in distinction

from classification methods that predict a binary or categorical outcome).

Prediction versus Explanation (Profiling)

Historically, a primary use of regression was to illuminate a supposed linear

relationship between predictor variables and an outcome variable. The goal

has been to understand a relationship and explain it using the data that the

regression was fit to. In this case, the primary focus is on the estimated

slope of the regression equation, . Economists want to know the

relationship between consumer spending and GDP growth. Public health

officials might want to understand whether a public information campaign

is effective in promoting safe sex practices. In such cases, the focus is not

on predicting individual cases, but rather on understanding the overall

relationship.

With the advent of big data, regression is widely used to form a model to

predict individual outcomes for new data, rather than explain data in hand

(i.e., a predictive model). In this instance, the main items of interest are the



.fitted values In marketing, regression can be used to predict the change

in revenue in response to the size of an ad campaign. Universities use

regression to predict students’ GPA based on their SAT scores.

A regression model that fits the data well is set up such that changes in X

lead to changes in Y. However, by itself, the regression equation does not

prove the direction of causation. Conclusions about causation must come

from a broader context of understanding about the relationship. For

example, a regression equation might show a definite relationship between

number of clicks on a web ad and number of conversions. It is our

knowledge of the marketing process, not the regression equation, that leads

us to the conclusion that clicks on the ad lead to sales, and not vice versa.

Key Ideas

The regression equation models the relationship between a

response variable Y and a predictor variable X as a line.

A regression model yields fitted values and residuals—predictions

of the response and the errors of the predictions.

Regression models are typically fit by the method of least squares.

Regression is used both for prediction and explanation.

Further Reading

For an in-depth treatment of prediction versus explanation, see Galit

Shmueli’s article “To Explain or to Predict”.

Multiple Linear Regression

When there are multiple predictors, the equation is simply extended to

accommodate them:



Instead of a line, we now have a linear model—the relationship between

each coefficient and its variable (feature) is linear.



Key Terms for Multiple Linear Regression

Root mean squared error

The square root of the average squared error of the regression (this

is the most widely used metric to compare regression models).

Synonyms

RMSE

Residual standard error

The same as the root mean squared error, but adjusted for degrees

of freedom.

Synonyms

RSE

R-squared

The proportion of variance explained by the model, from 0 to 1.

Synonyms

coefficient of determination,

t-statistic

The coefficient for a predictor, divided by the standard error of the

coefficient, giving a metric to compare the importance of variables

in the model.

Weighted regression

Regression with the records having different weights.

All of the other concepts in simple linear regression, such as fitting by least



squares and the definition of fitted values and residuals, extend to the

multiple linear regression setting. For example, the fitted values are given

by:

Example: King County Housing Data

An example of using regression is in estimating the value of houses.

County assessors must estimate the value of a house for the purposes of

assessing taxes. Real estate consumers and professionals consult popular

websites such as Zillow to ascertain a fair price. Here are a few rows of

housing data from King County (Seattle), Washington, from the house

data.frame:

head(house[, c("AdjSalePrice", "SqFtTotLiving", "SqFtLot",

"Bathrooms",

"Bedrooms", "BldgGrade")])

Source: local data frame [6 x 6]

AdjSalePrice SqFtTotLiving SqFtLot Bathrooms Bedrooms BldgGrade

(dbl) (int) (int) (dbl) (int) (int)

1 300805 2400 9373 3.00 6 7

2 1076162 3764 20156 3.75 4 10

3 761805 2060 26036 1.75 4 8

4 442065 3200 8618 3.75 5 7

5 297065 1720 8620 1.75 4 7

6 411781 930 1012 1.50 2 8

The goal is to predict the sales price from the other variables. The lm

handles the multiple regression case simply by including more terms on the

righthand side of the equation; the argument na.action=na.omit causes

the model to drop records that have missing values:

house_lm <- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms



+

Bedrooms + BldgGrade,

data=house, na.action=na.omit)

Printing house_lm object produces the following output:

house_lm

Call:

lm(formula = AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +

Bedrooms + BldgGrade, data = house, na.action = na.omit)

Coefficients:

(Intercept) SqFtTotLiving SqFtLot Bathrooms

-5.219e+05 2.288e+02 -6.051e-02 -1.944e+04

Bedrooms BldgGrade

-4.778e+04 1.061e+05

The interpretation of the coefficients is as with simple linear regression: the

predicted value changes by the coefficient for each unit change in

assuming all the other variables, , remain the same.

For example, adding an extra finished square foot to a house increases the

estimated value by roughly $229; adding 1,000 finished square feet implies

the value will increase by $228,800.

Assessing the Model

for

The most important performance metric from a data science perspective is

root mean squared error, or RMSE. RMSE is the square root of the average

squared error in the predicted values:



This measures the overall accuracy of the model, and is a basis for

comparing it to other models (including models fit using machine learning

techniques). Similar to RMSE is the residual standard error, or RSE. In

this case we have p predictors, and the RSE is given by:

The only difference is that the denominator is the degrees of freedom, as

opposed to number of records (see “Degrees of Freedom”). In practice, for

linear regression, the difference between RMSE and RSE is very small,

particularly for big data applications.

The summary function in R computes RSE as well as other metrics for a

regression model:

summary(house_lm)

Call:

lm(formula = AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +

Bedrooms + BldgGrade, data = house, na.action = na.omit)

Residuals:

Min 1Q Median 3Q Max

-1199508 -118879 -20982 87414 9472982



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.219e+05 1.565e+04 -33.349 < 2e-16 ***

SqFtTotLivingSqFtLot -6.051e-022.288e+02 3.898e+006.118e-02 58.699-0.989 < 2e-160.323 ***

Bathrooms -1.944e+04 3.625e+03 -5.362 8.32e-08 ***

Bedrooms -4.778e+04 2.489e+03 -19.194 < 2e-16 ***

BldgGrade--- 1.061e+05 2.396e+03 44.287 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 261200 on 22683 degrees of freedom

Multiple R-squared: 0.5407, Adjusted R-squared: 0.5406

F-statistic: 5340 on 5 and 22683 DF, p-value: < 2.2e-16

Another useful metric that you will see in software output is the coefficient

of determination, also called the R-squared statistic or . R-squared

ranges from 0 to 1 and measures the proportion of variation in the data that

is accounted for in the model. It is useful mainly in explanatory uses of

regression where you want to assess how well the model fits the data. The

formula for is:

The denominator is proportional to the variance of Y. The output from R

also reports an adjusted R-squared, which adjusts for the degrees of

freedom; seldom is this significantly different in multiple regression.

Along with the estimated coefficients, R reports the standard error of the



coefficients (SE) and a t-statistic:

The t-statistic—and its mirror image, the p-value—measures the extent to

which a coefficient is “statistically significant”—that is, outside the range

of what a random chance arrangement of predictor and target variable

might produce. The higher the t-statistic (and the lower the p-value), the

more significant the predictor. Since parsimony is a valuable model feature,

it is useful to have a tool like this to guide choice of variables to include as

predictors (see “Model Selection and Stepwise Regression”).

Warning

In addition to the t-statistic, R and other packages will often report a p

value (Pr(>|t|) in the Routput) and F-statistic. Data scientists do not

generally get too involved with the interpretation of these statistics, nor

with the issue of statistical significance. Data scientists primarily focus on

the t-statistic as a useful guide for whether to include a predictor in a model

or not. High t-statistics (which go with p-values near 0) indicate a predictor

should be retained in a model, while very low t-statistics indicate a

predictor could be dropped. See “P-Value” for more discussion.

Cross-Validation

Classic statistical regression metrics (R2, F-statistics, and p-values) are all

“in-sample” metrics—they are applied to the same data that was used to fit

the model. Intuitively, you can see that it would make a lot of sense to set

aside some of the original data, not use it to fit the model, and then apply



the model to the set-aside (holdout) data to see how well it does. Normally,

you would use a majority of the data to fit the model, and use a smaller

portion to test the model.

This idea of “out-of-sample” validation is not new, but it did not really take

hold until larger data sets became more prevalent; with a small data set,

analysts typically want to use all the data and fit the best possible model.

Using a holdout sample, though, leaves you subject to some uncertainty

that arises simply from variability in the small holdout sample. How

different would the assessment be if you selected a different holdout

sample?

Cross-validation extends the idea of a holdout sample to multiple sequential

holdout samples. The algorithm for basic k-fold cross-validation is as

follows:

1. Set aside 1/k of the data as a holdout sample.

2. Train the model on the remaining data.

3. Apply (score) the model to the 1/k holdout, and record needed model

assessment metrics.

4. Restore the first 1/k of the data, and set aside the next 1/k (excluding any

records that got picked the first time).

5. Repeat steps 2 and 3.

6. Repeat until each record has been used in the holdout portion.

7. Average or otherwise combine the model assessment metrics.

The division of the data into the training sample and the holdout sample is

also called a fold.

Model Selection and Stepwise Regression



In some problems, many variables could be used as predictors in a

regression. For example, to predict house value, additional variables such

as the basement size or year built could be used. In R, these are easy to add

to the regression equation:

house_fullBathrooms +<- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot +

Bedrooms + BldgGrade + PropertyType +

NbrLivingUnits +

SqFtFinBasement + YrBuilt + YrRenovated +

NewConstruction,

data=house, na.action=na.omit)

Adding more variables, however, does not necessarily mean we have a

better model. Statisticians use the principle of Occam’s razor to guide the

choice of a model: all things being equal, a simpler model should be used in

preference to a more complicated model.

Including additional variables always reduces RMSE and increases .

Hence, these are not appropriate to help guide the model choice. In the

1970s, Hirotugu Akaike, the eminent Japanese statistician, deveoped a

metric called AIC (Akaike’s Information Criteria) that penalizes adding

terms to a model. In the case of regression, AIC has the form:

AIC = 2P+ n log(RSS/n)

where p is the number of variables and n is the number of records. The goal

is to find the model that minimizes AIC; models with k more extra

variables are penalized by 2k.

AIC, BIC and Mallows Cp

The formula for AIC may seem a bit mysterious, but in fact it is based on

asymptotic results in information theory. There are several variants to AIC:



AICc: a version of AIC corrected for small sample sizes.

BIC or Bayesian information criteria: similar to AIC with a stronger

penalty for including additional variables to the model.

Mallows Cp: A variant of AIC developed by Colin Mallows.

Data scientists generally do not need to worry about the differences among

these in-sample metrics or the underlying theory behind them.

How do we find the model that minimizes AIC? One approach is to search

through all possible models, called all subset regression. This is

computationally expensive and is not feasible for problems with large data

and many variables. An attractive alternative is to use stepwise regression,

which successively adds and drops predictors to find a model that lowers

AIC. The MASS package by Venebles and Ripley offers a stepwise

regression function called stepAIC:

library(MASS)step <- stepAIC(house_full, direction="both")

step

Call:

lm(formula = AdjSalePrice ~ SqFtTotLiving + Bathrooms + Bedrooms +

BldgGrade + PropertyType + SqFtFinBasement + YrBuilt, data =

house0,

na.action = na.omit)

Coefficients:

(Intercept) SqFtTotLiving

6227632.22 186.50

Bathrooms Bedrooms

44721.72 -49807.18BldgGrade PropertyTypeSingle Family

139179.23 23328.69

PropertyTypeTownhouse SqFtFinBasement

92216.25 9.04

YrBuilt

-3592.47



The function chose a model in which several variables were dropped from

house_full: SqFtLot, NbrLivingUnits, YrRenovated, and

NewConstruction.

Simpler yet are forward selection and backward selection. In forward

selection, you start with no predictors and add them one-by-one, at each

step adding the predictor that has the largest contribution to , stopping

when the contribution is no longer statistically significant. In backward

selection, or backward elimination, you start with the full model and take

away predictors that are not statistically significant until you are left with a

model in which all predictors are statistically significant.

Penalized regression is similar in spirit to AIC. Instead of explicitly

searching through a discrete set of models, the model-fitting equation

incorporates a constraint that penalizes the model for too many variables

(parameters). Rather than eliminating predictor variables entirely—as with

stepwise, forward, and backward selection—penalized regression applies

the penalty by reducing coefficients, in some cases to near zero. Common

penalized regression methods are ridge regression and lasso regression.

Stepwise regression and all subset regression are in-sample methods to

assess and tune models. This means the model selection is possibly subject

to overfitting and may not perform as well when applied to new data. One

common approach to avoid this is to use cross-validation to validate the

models. In linear regression, overfitting is typically not a major issue, due

to the simple (linear) global structure imposed on the data. For more

sophisticated types of models, particularly iterative procedures that respond

to local data structure, cross-validation is a very important tool; see “Cross

Validation” for details.

Weighted Regression

Weighted regression is used by statisticians for a variety of purposes; in

particular, it is important for analysis of complex surveys. Data scientists



may find weighted regression useful in two cases:

Inverse-variance weighting when different observations have been

measured with different precision.

Analysis of data in an aggregated form such that the weight variable

encodes how many original observations each row in the aggregated

data represents.

For example, with the housing data, older sales are less reliable than more

recent sales. Using the DocumentDate to determine the year of the sale, we

can compute a Weight as the number of years since 2005 (the beginning of

the data).

library(lubridate)

house$Year = year(house$DocumentDate)

house$Weight = house$Year - 2005

We can compute a weighted regression with the lm function using the

weight argument.

house_wt <- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms

+

Bedrooms + BldgGrade,

data=house, weight=Weight)

round(cbind(house_lm=house_lm$coefficients,

house_wt=house_wt$coefficients), digits=3)

house_lm house_wt

(Intercept) -521924.722 -584265.244SqFtTotLiving 228.832 245.017

SqFtLot -0.061 -0.292

Bathrooms -19438.099 -26079.171Bedrooms -47781.153 -53625.404

BldgGrade 106117.210 115259.026



The coefficents in the weighted regression are slightly different from the

original regression.

Key Ideas

Multiple linear regression models the relationship between a

response variable Y and multiple predictor variables

.

The most important metrics to evaluate a model are root mean

squared error (RMSE) and R-squared (R2).

The standard error of the coefficients can be used to measure the

reliability of a variable’s contribution to a model.

Stepwise regression is a way to automatically determine which

variables should be included in the model.

Weighted regression is used to give certain records more or less

weight in fitting the equation.

Prediction Using Regression

The primary purpose of regression in data science is prediction. This is

useful to keep in mind, since regression, being an old and established

statistical method, comes with baggage that is more relevant to its

traditional explanatory modeling role than to prediction.



Key Terms for Prediction Using Regression

Prediction interval

An uncertainty interval around an individual predicted value.

Extrapolation

Extension of a model beyond the range of the data used to fit it.

The Dangers of Extrapolation

Regression models should not be used to extrapolate beyond the range of

the data. The model is valid only for predictor values for which the data has

sufficient values (even in the case that sufficient data is available, there

could be other problems: see “Testing the Assumptions: Regression

Diagnostics”). As an extreme case, suppose model_lm is used to predict the

value of a 5,000-square-foot empty lot. In such a case, all the predictors

related to the building would have a value of 0 and the regression equation

would yield an absurd prediction of –521,900 + 5,000 × –.0605 = –

$522,202. Why did this happen? The data contains only parcels with

buildings—there are no records corresponding to vacant land.

Consequently, the model has no information to tell it how to predict the

sales price for vacant land.

Confidence and Prediction Intervals

Much of statistics involves understanding and measuring variability

(uncertainty). The t-statistics and p-values reported in regression output

deal with this in a formal way, which is sometimes useful for variable

selection (see “Assessing the Model”). More useful metrics are confidence

intervals, which are uncertainty intervals placed around regression

coefficients and predictions. An easy way to understand this is via the

bootstrap (see “The Bootstrap” for more details about the general bootstrap

procedure). The most common regression confidence intervals encountered



in software output are those for regression parameters (coefficients). Here

is a bootstrap algorithm for generating confidence intervals for regression

parameters (coefficients) for a data set with P predictors and n records

(rows):

1. Consider each row (including outcome variable) as a single “ticket” and

place all the n tickets in a box.

2. Draw a ticket at random, record the values, and replace it in the box.

3. Repeat step 2 n times; you now have one bootstrap resample.

4. Fit a regression to the bootstrap sample, and record the estimated

coefficients.

5. Repeat steps 2 through 4, say, 1,000 times.

6. You now have 1,000 bootstrap values for each coefficient; find the

appropriate percentiles for each one (e.g., 5th and 95th for a 90%

confidence interval).

You can use the Boot function in R to generate actual bootstrap confidence

intervals for the coefficients, or you can simply use the formula-based

intervals that are a routine R output. The conceptual meaning and

interpretation are the same, and not of central importance to data scientists,

because they concern the regression coefficients. Of greater interest to data

scientists are intervals around predicted y values (). The uncertainty

around comes from two sources:

Uncertainty about what the relevant predictor variables and their

coefficients are (see the preceding bootstrap algorithm)

Additional error inherent in individual data points



The individual data point error can be thought of as follows: even if we

knew for certain what the regression equation was (e.g., if we had a huge

number of records to fit it), the actual outcome values for a given set of

predictor values will vary. For example, several houses—each with 8

rooms, a 6,500 square foot lot, 3 bathrooms, and a basement—might have

different values. We can model this individual error with the residuals from

the fitted values. The bootstrap algorithm for modeling both the regression

model error and the individual data point error would look as follows:

1. Take a bootstrap sample from the data (spelled out in greater detail

earlier).

2. Fit the regression, and predict the new value.

3. Take a single residual at random from the original regression fit, add it

to the predicted value, and record the result.

4. Repeat steps 1 through 3, say, 1,000 times.

5. Find the 2.5th and the 97.5th percentiles of the results.

Prediction Interval or Confidence Interval?

A prediction interval pertains to uncertainty around a single value, while a

confidence interval pertains to a mean or other statistic calculated from

multiple values. Thus, a prediction interval will typically be much wider

than a confidence interval for the same value. We model this individual

value error in the bootstrap model by selecting an individual residual to

tack on to the predicted value. Which should you use? That depends on the

context and the purpose of the analysis, but, in general, data scientists are

interested in specific individual predictions, so a prediction interval would

be more appropriate. Using a confidence interval when you should be using

a prediction interval will greatly underestimate the uncertainty in a given

predicted value.



Key Ideas

Extrapolation beyond the range of the data can lead to error.

Confidence intervals quantify uncertainty around regression

coefficients.

Prediction intervals quantify uncertainty in individual predictions.

Most software, R included, will produce prediction and confidence

intervals in default or specified output, using formulas.

The bootstrap can also be used; the interpretation and idea are the

same.

Factor Variables in Regression

Factor variables, also termed categorical variables, take on a limited

number of discrete values. For example, a loan purpose can be “debt

consolidation,” “wedding,” “car,” and so on. The binary (yes/no) variable,

also called an indicator variable, is a special case of a factor variable.

Regression requires numerical inputs, so factor variables need to be

recoded to use in the model. The most common approach is to convert a

variable into a set of binary dummy variables.



Key Terms for Factor Variables

Dummy variables

Binary 0–1 variables derived by recoding factor data for use in

regression and other models.

Reference coding

The most common type of coding used by statisticians, in which

one level of a factor is used as a reference and other factors are

compared to that level.

Synonyms

treatment coding

One hot encoder

A common type of coding used in the machine learning

community in which all factors levels are retained. While useful

for certain machine learning algorithms, this approach is not

appropriate for multiple linear regression.

Deviation coding

A type of coding that compares each level against the overall mean

as opposed to the reference level.

Synonyms

sum contrasts

Dummy Variables Representation

In the King County housing data, there is a factor variable for the property

type; a small subset of six records is shown below.



head(house[,Source: local'PropertyType'])data frame [6 x 1]

PropertyType

(fctr)

1 Multiplex

2 Single Family

34 SingleSingle Family

Family

5 Single Family

6 Townhouse

There are three possible values: Multiplex, Single Family, and

Townhouse. To use this factor variable, we need to convert it to a set of

binary variables. We do this by creating a binary variable for each possible

value of the factor variable. To do this in R, we use the model.matrix

function:3

prop_type_dummies <- model.matrix(~PropertyType -1, data=house)

head(prop_type_dummies)

PropertyTypeMultiplex PropertyTypeSingle Family

PropertyTypeTownhouse

10 1 0

2 0 1

0

30 0 1

4 0 1

0

5 0 1

0

6 0 0

1

The function model.matrix converts a data frame into a matrix suitable to

a linear model. The factor variable PropertyType, which has three distinct

levels, is represented as a matrix with three columns. In the machine



learning community, this representation is referred to as one hot encoding

(see “One Hot Encoder”). In certain machine learning algorithms, such as

nearest neighbors and tree models, one hot encoding is the standard way to

represent factor variables (for example, see “Tree Models”).

In the regression setting, a factor variable with P distinct levels is usually

represented by a matrix with only P – 1 columns. This is because a

regression model typically includes an intercept term. With an intercept,

once you have defined the values for P – 1 binaries, the value for the Pth is

known and could be considered redundant. Adding the Pth column will

cause a multicollinearity error (see “Multicollinearity”).

The default representation in R is to use the first factor level as a reference

and interpret the remaining levels relative to that factor.

lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +

+ Bedrooms + BldgGrade + PropertyType, data=house)

Call:

lm(formula = AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms +

Bedrooms + BldgGrade + PropertyType, data = house)

Coefficients:

(Intercept) SqFtTotLiving

-4.469e+05 2.234e+02

SqFtLot Bathrooms

-7.041e-02 -1.597e+04

Bedrooms BldgGrade

-5.090e+04 1.094e+05

PropertyTypeSingle Family PropertyTypeTownhouse

-8.469e+04 -1.151e+05

The output from the R regression shows two coefficients corresponding to

PropertyType: PropertyTypeSingle Family and

PropertyTypeTownhouse. There is no coefficient of Multiplex since it is

implicitly defined when PropertyTypeSingle Family == 0 and



PropertyTypeTownhouse == 0. The coefficients are interpreted as relative

to Multiplex, so a home that is Single Family is worth almost $85,000

less, and a home that is Townhouse is worth over $150,000 less.4

Different Factor Codings

There are several different ways to encode factor variables, known as

contrast coding systems. For example, deviation coding, also know as sum

contrasts, compares each level against the overall mean. Another contrast is

polynomial coding, which is appropriate for ordered factors; see the section

“Ordered Factor Variables”. With the exception of ordered factors, data

scientists will generally not encounter any type of coding besides reference

coding or one hot encoder.

Factor Variables with Many Levels

Some factor variables can produce a huge number of binary dummies—zip

codes are a factor variable and there are 43,000 zip codes in the US. In such

cases, it is useful to explore the data, and the relationships between

predictor variables and the outcome, to determine whether useful

information is contained in the categories. If so, you must further decide

whether it is useful to retain all factors, or whether the levels should be

consolidated.

In King County, there are 82 zip codes with a house sale:

table(house$ZipCode)

9800 89118 98001 98002 98003 98004 98005 98006 98007 98008 9801098011163

1 1 358 180 241 293 133 460 112 291 56

98014 98019 98022 98023 98024 98027 98028 98029 98030 98031 98032

9803385 242 188 455 31 366 252 475 263 308 121

51798034 98038 98039 98040 98042 98043 98045 98047 98050 98051 98052

98053

575 788 47 244 641 1 222 48 7 32 614



49998055 98056 98057 98058 98059 98065 98068 98070 98072 98074 98075

98077332 402 4 420 513 430 1 89 245 502 388

20498092 98102 98103 98105 98106 98107 98108 98109 98112 98113 98115

98116289 106 671 313 361 296 155 149 357 1 620

36498117 98118 98119 98122 98125 98126 98133 98136 98144 98146 98148

98155619 492 260 380 409 473 465 310 332 287 40

35898166 98168 98177 98178 98188 98198 98199 98224 98288 98354

193 332 216 266 101 225 393 3 4 9

ZipCode is an important variable, since it is a proxy for the effect of

location on the value of a house. Including all levels requires 81

coefficients corresponding to 81 degrees of freedom. The original model

house_lm has only 5 degress of freedom; see “Assessing the Model”.

Moreover, several zip codes have only one sale. In some problems, you can

consolidate a zip code using the first two or three digits, corresponding to a

submetropolitan geographic region. For King County, almost all of the

sales occur in 980xx or 981xx, so this doesn’t help.

An alternative approach is to group the zip codes according to another

variable, such as sale price. Even better is to form zip code groups using the

residuals from an initial model. The following dplyr code consolidates the

82 zip codes into five groups based on the median of the residual from the

house_lm regression:

zip_groups <- house %>%

mutate(resid = residuals(house_lm)) %>%

group_by(ZipCode) %>%

summarize(med_resid = median(resid),

cnt = n()) %>%

arrange(med_resid) %>%

mutate(cum_cnt = cumsum(cnt),



ZipGroup = ntile(cum_cnt, 5))

house <- house %>%

left_join(select(zip_groups, ZipCode, ZipGroup), by='ZipCode')

The median residual is computed for each zip and the ntile function is

used to split the zip codes, sorted by the median, into five groups. See

“Confounding Variables” for an example of how this is used as a term in a

regression improving upon the original fit.

The concept of using the residuals to help guide the regression fitting is a

fundamental step in the modeling process; see “Testing the Assumptions:

Regression Diagnostics”.

Ordered Factor Variables

Some factor variables reflect levels of a factor; these are termed ordered

factor variables or ordered categorical variables. For example, the loan

grade could be A, B, C, and so on—each grade carries more risk than the

prior grade. Ordered factor variables can typically be converted to

numerical values and used as is. For example, the variable BldgGrade is an

ordered factor variable. Several of the types of grades are shown in Table 4

1. While the grades have specific meaning, the numeric value is ordered

from low to high, corresponding to higher-grade homes. With the

regression model house_lm, fit in “Multiple Linear Regression”,

BldgGrade was treated as a numeric variable.



Table 4-1. A

typical data

format

Value Description

1 Cabin

2 Substandard

5 Fair

10 Very good

12 Luxury

13 Mansion

Treating ordered factors as a numeric variable preserves the information

contained in the ordering that would be lost if it were converted to a factor.

Key Ideas

Factor variables need to be converted into numeric variables for use

in a regression.

The most common method to encode a factor variable with P

distinct values is to represent them using P-1 dummy variables.

A factor variable with many levels, even in very big data sets, may

need to be consolidated into a variable with fewer levels.

Some factors have levels that are ordered and can be represented as

a single numeric variable.



Interpreting the Regression Equation

In data science, the most important use of regression is to predict some

dependent (outcome) variable. In some cases, however, gaining insight

from the equation itself to understand the nature of the relationship between

the predictors and the outcome can be of value. This section provides

guidance on examining the regression equation and interpreting it.



Key Terms for Interpreting the Regression Equation

Correlated variables

When the predictor variables are highly correlated, it is difficult to

interpret the individual coefficients.

Multicollinearity

When the predictor variables have perfect, or near-perfect,

correlation, the regression can be unstable or impossible to

compute.

Synonyms

collinearity

Confounding variables

An important predictor that, when omitted, leads to spurious

relationships in a regression equation.

Main effects

The relationship between a predictor and the outcome variable,

independent from other variables.

Interactions

An interdependent relationship between two or more predictors

and the response.

Correlated Predictors

In multiple regression, the predictor variables are often correlated with each

other. As an example, examine the regression coefficients for the model

step_lm, fit in “Model Selection and Stepwise Regression”:



step_lm$coefficients

(Intercept) SqFtTotLiving

6.227632e+06 1.865012e+02

Bathrooms Bedrooms

4.472172e+04 -4.980718e+04

BldgGrade PropertyTypeSingle Family

1.391792e+05 2.332869e+04

PropertyTypeTownhouse SqFtFinBasement

9.221625e+04 9.039911e+00

YrBuilt

-3.592468e+03

The coefficient for Bedrooms is negative! This implies that adding a

bedroom to a house will reduce its value. How can this be? This is because

the predictor variables are correlated: larger houses tend to have more

bedrooms, and it is the size that drives house value, not the number of

bedrooms. Consider two homes of the exact same size: it is reasonable to

expect that a home with more, but smaller, bedrooms would be considered

less desirable.

Having correlated predictors can make it difficult to interpret the sign and

value of regression coefficients (and can inflate the standard error of the

estimates). The variables for bedrooms, house size, and number of

bathrooms are all correlated. This is illustrated by the following example,

which fits another regression removing the variables SqFtTotLiving,

SqFtFinBasement, and Bathrooms from the equation:

update(step_lm, . ~ . -SqFtTotLiving - SqFtFinBasement -

Bathrooms)

Call:

lm(formula = AdjSalePrice ~ Bedrooms + BldgGrade + PropertyType +

YrBuilt, data = house0, na.action = na.omit)

Coefficients:

(Intercept) Bedrooms

4834680 27657

BldgGrade PropertyTypeSingle Family



245709 -17604

PropertyTypeTownhouse YrBuilt

-47477 -3161

The update function can be used to add or remove variables from a model.

Now the coefficient for bedrooms is positive—in line with what we would

expect (though it is really acting as a proxy for house size, now that those

variables have been removed).

Correlated variables are only one issue with interpreting regression

coefficients. In house_lm, there is no variable to account for the location of

the home, and the model is mixing together very different types of regions.

Location may be a confounding variable; see “Confounding Variables” for

further discussion.

Multicollinearity

An extreme case of correlated variables produces multicollinearity—a

condition in which there is redundance among the predictor variables.

Perfect multicollinearity occurs when one predictor variable can be

expressed as a linear combination of others. Multicollinearity occurs when:

A variable is included multiple times by error.

P dummies, instead of P – 1 dummies, are created from a factor variable

(see “Factor Variables in Regression”).

Two variables are nearly perfectly correlated with one another.

Multicollinearity in regression must be addressed—variables should be

removed until the multicollinearity is gone. A regression does not have a

well-defined solution in the presence of perfect multicollinearity. Many

software packages, including R, automatically handle certain types of

multicolliearity. For example, if SqFtTotLiving is included twice in the

regression of the house data, the results are the same as for the house_lm



model. In the case of nonperfect multicollinearity, the software may obtain

a solution but the results may be unstable.

Note

Multicollinearity is not such a problem for nonregression methods like

trees, clustering, and nearest-neighbors, and in such methods it may be

advisable to retain P dummies (instead of P – 1). That said, even in those

methods, nonredundancy in predictor variables is still a virtue.

Confounding Variables

With correlated variables, the problem is one of commission: including

different variables that have a similar predictive relationship with the

response. With confounding variables, the problem is one of omission: an

important variable is not included in the regression equation. Naive

interpretation of the equation coefficients can lead to invalid conclusions.

Take, for example, the King County regression equation house_lm from

“Example: King County Housing Data”. The regression coefficients of

SqFtLot, Bathrooms, and Bedrooms are all negative. The original

regression model does not contain a variable to represent location—a very

important predictor of house price. To model location, include a variable

ZipGroup that categorizes the zip code into one of five groups, from least

expensive (1) to most expensive (5).5

lm(AdjSalePriceBathrooms +~BedroomsSqFtTotLiving+ + SqFtLot +

BldgGrade + PropertyType + ZipGroup,

data=house, na.action=na.omit)

Coefficients:

(Intercept) SqFtTotLiving

-6.709e+05SqFtLot 2.112e+02

Bathrooms

4.692e-01 5.537e+03

Bedrooms BldgGrade

-4.139e+04 9.893e+04

PropertyTypeSingle Family PropertyTypeTownhouse



2.113e+04 -7.741e+04

ZipGroup2 ZipGroup3

5.169e+04 1.142e+05

ZipGroup4 ZipGroup5

1.783e+05 3.391e+05

ZipGroup is clearly an important variable: a home in the most expensive

zip code group is estimated to have a higher sales price by almost

$340,000. The coefficients of SqFtLot and Bathrooms are now positive

and adding a bathroom increases the sale price by $7,500.

The coefficient for Bedrooms is still negative. While this is unintuitive, this

is a well-known phenomenon in real estate. For homes of the same livable

area and number of bathrooms, having more, and therefore smaller,

bedrooms is associated with less valuable homes.

Interactions and Main Effects

Statisticians like to distinguish between main effects, or independent

variables, and the interactions between the main effects. Main effects are

what are often referred to as the predictor variables in the regression

equation. An implicit assumption when only main effects are used in a

model is that the relationship between a predictor variable and the response

is independent of the other predictor variables. This is often not the case.

For example, the model fit to the King County Housing Data in

“Confounding Variables” includes several variables as main effects,

including ZipCode. Location in real estate is everything, and it is natural to

presume that the relationship between, say, house size and the sale price

depends on location. A big house built in a low-rent district is not going to

retain the same value as a big house built in an expensive area. You include

interactions between variables in R using the * operator. For the King

County data, the following fits an interaction between SqFtTotLiving and

ZipGroup:



lm(AdjSalePrice ~ SqFtTotLiving*ZipGroup + SqFtLot +

Bathrooms + Bedrooms + BldgGrade + PropertyType,

data=house, na.action=na.omit)

Coefficients:

(Intercept) SqFtTotLiving

-4.919e+05 1.176e+02

ZipGroup2 ZipGroup3

-1.342e+04 2.254e+04

ZipGroup4 ZipGroup5

1.776e+04 -1.555e+05

SqFtLot Bathrooms

7.176e-01 -5.130e+03

Bedrooms BldgGrade

-4.181e+04 1.053e+05

PropertyTypeSingle Family PropertyTypeTownhouse

1.603e+04 -5.629e+04

SqFtTotLiving:ZipGroup2 SqFtTotLiving:ZipGroup3

3.165e+01 3.893e+01

SqFtTotLiving:ZipGroup4 SqFtTotLiving:ZipGroup57.051e+01 2.298e+02

The resulting model has four new terms: SqFtTotLiving:ZipGroup2,

SqFtTotLiving:ZipGroup3, and so on.

Location and house size appear to have a strong interaction. For a home in

the lowest ZipGroup, the slope is the same as the slope for the main effect

SqFtTotLiving, which is $177 per square foot (this is because R uses

reference coding for factor variables; see “Factor Variables in

Regression”). For a home in the highest ZipGroup, the slope is the sum of

the main effect plus SqFtTotLiving:ZipGroup5, or $177 + $230 = $447

per square foot. In other words, adding a square foot in the most expensive

zip code group boosts the predicted sale price by a factor of almost 2.7,

compared to the boost in the least expensive zip code group.

Model Selection with Interaction Terms

In problems involving many variables, it can be challenging to decide

which interaction terms should be included in the model. Several different



approaches are commonly taken:

In some problems, prior knowledge and intuition can guide the choice of

which interaction terms to include in the model.

Stepwise selection (see “Model Selection and Stepwise Regression”)

can be used to sift through the various models.

Penalized regression can automatically fit to a large set of possible

interaction terms.

Perhaps the most common approach is the use tree models, as well as

their descendents, random forest and gradient boosted trees. This class

of models automatically searches for optimal interaction terms; see

“Tree Models”.

Key Ideas

Because of correlation between predictors, care must be taken in

the interpretation of the coefficients in multiple linear regression.

Multicollinearity can cause numerical instability in fitting the

regression equation.

A confounding variable is an important predictor that is omitted

from a model and can lead to a regression equation with spurious

relationships.

An interaction term between two variables is needed if the

relationship between the variables and the response is

interdependent.

Testing the Assumptions: Regression Diagnostics



In explanatory modeling (i.e., in a research context), various steps, in

addition to the metrics mentioned previously (see “Assessing the Model”),

are taken to assess how well the model fits the data. Most are based on

analysis of the residuals, which can test the assumptions underlying the

model. These steps do not directly address predictive accuracy, but they can

provide useful insight in a predictive setting.

Key Terms for Regression Diagnostics

Standardized residuals

Residuals divided by the standard error of the residuals.

Outliers

Records (or outcome values) that are distant from the rest of the

data (or the predicted outcome).

Influential value

A value or record whose presence or absence makes a big

difference in the regression equation.

Leverage

The degree of influence that a single record has on a regression

equation.

Synonyms

hat-value

Non-normal residuals

Non-normally distributed residuals can invalidate some technical

requirements of regression, but are usually not a concern in data

science.



Heteroskedasticity

When some ranges of the outcome experience residuals with

higher variance (may indicate a predictor missing from the

equation).

Partial residual plots

A diagnostic plot to illuminate the relationship between the

outcome variable and a single predictor.

Synonyms

added variables plot

Outliers

Generally speaking, an extreme value, also called an outlier, is one that is

distant from most of the other observations. Just as outliers need to be

handled for estimates of location and variability (see “Estimates of

Location” and “Estimates of Variability”), outliers can cause problems with

regression models. In regression, an outlier is a record whose actual y value

is distant from the predicted value. You can detect outliers by examining

the standardized residual, which is the residual divided by the standard

error of the residuals.

There is no statistical theory that separates outliers from nonoutliers.

Rather, there are (arbitrary) rules of thumb for how distant from the bulk of

the data an observation needs to be in order to be called an outlier. For

example, with the boxplot, outliers are those data points that are too far

above or below the box boundaries (see “Percentiles and Boxplots”), where

“too far” = “more than 1.5 times the inter-quartile range.” In regression, the

standardized residual is the metric that is typically used to determine

whether a record is classified as an outlier. Standardized residuals can be

interpreted as “the number of standard errors away from the regression



line.”

Let’s fit a regression to the King County house sales data for all sales in zip

code 98105:

house_98105 <- house[house$ZipCode == 98105,]

lm_98105 <- lm(AdjSalePrice ~ SqFtTotLiving + SqFtLot + Bathrooms

+

Bedrooms + BldgGrade, data=house_98105)

We extract the standardized residuals using the rstandard function and

obtain the index of the smallest residual using the order function:

sresid <- rstandard(lm_98105)

idx <- order(sresid)

sresid[idx[1]]

20431

-4.326732

The biggest overestimate from the model is more than four standard errors

above the regression line, corresponding to an overestimate of $757,753.

The original data record corresponding to this outlier is as follows:

house_98105[idx[1], c('AdjSalePrice', 'SqFtTotLiving', 'SqFtLot',

'Bathrooms', 'Bedrooms', 'BldgGrade')]

AdjSalePrice SqFtTotLiving SqFtLot Bathrooms Bedrooms BldgGrade

(dbl) (int) (int) (dbl) (int) (int)

1 119748 2900 7276 3 6 7

In this case, it appears that there is something wrong with the record: a

house of that size typically sells for much more than $119,748 in that zip

code. Figure 4-4 shows an excerpt from the statuatory deed from this sale:

it is clear that the sale involved only partial interest in the property. In this

case, the outlier corresonds to a sale that is anomalous and should not be



included in the regression. Outliers could also be the result of other

problems, such as a “fat-finger” data entry or a mismatch of units (e.g.,

reporting a sale in thousands of dollars versus simply dollars).

Figure 4-4. Statutory warrant of deed for the largest negative residual

For big data problems, outliers are generally not a problem in fitting the

regression to be used in predicting new data. However, outliers are central

to anomaly detection, where finding outliers is the whole point. The outlier

could also correspond to a case of fraud or an accidental action. In any case,

detecting outliers can be a critical business need.

Influential Values

A value whose absence would significantly change the regression equation

is termed an infuential observation. In regression, such a value need not be

associated with a large residual. As an example, consider the regression

lines in Figure 4-5. The solid line corresponds to the regression with all the

data, while the dashed line corresonds to the regression with the point in the

upper-right removed. Clearly, that data value has a huge influence on the

regression even though it is not associated with a large outlier (from the full

regression). This data value is considered to have high leverage on the

regression.

In addition to standardized residuals (see “Outliers”), statisticians have

developed several metrics to determine the influence of a single record on a

regression. A common measure of leverage is the hat-value; values above

indicate a high-leverage data value.6



Figure 4-5. An example of an influential data point in regression

Another metric is Cook’s distance, which defines influence as a

combination of leverage and residual size. A rule of thumb is that an

observation has high influence if Cook’s distance exceeds

.

An influence plot or bubble plot combines standardized residuals, the hat



value, and Cook’s distance in a single plot. Figure 4-6 shows the influence

plot for the King County house data, and can be created by the following R

code.

std_resid <- rstandard(lm_98105)

cooks_D <- cooks.distance(lm_98105)

hat_values <- hatvalues(lm_98105)

plot(hat_values, std_resid, cex=10*sqrt(cooks_D))

abline(h=c(-2.5, 2.5), lty=2)

There are apparently several data points that exhibit large influence in the

regression. Cook’s distance can be computed using the function

cooks.distance, and you can use hatvalues to compute the diagnostics.

The hat values are plotted on the x-axis, the residuals are plotted on the y

axis, and the size of the points is related to the value of Cook’s distance.



Figure 4-6. A plot to determine which observations have high influence

Table 4-2 compares the regression with the full data set and with highly

influential data points removed. The regression coefficient for Bathrooms

changes quite dramatically.7



Table 4-2. Comparison of regression

coefficients with the full data and with

influential data removed

Original
Influential

removed

(Intercept) –772550 –647137

SqFtTotLiving 210 230SqFtLot 39 33

Bathrooms 2282 –16132

Bedrooms –26320 –22888

BldgGrade 130000 114871

For purposes of fitting a regression that reliably predicts future data,

identifying influential observations is only useful in smaller data sets. For

regressions involving many records, it is unlikely that any one observation

will carry sufficient weight to cause extreme influence on the fitted

equation (although the regression may still have big outliers). For purposes

of anomaly detection, though, identifying influential observations can be

very useful.

Heteroskedasticity, Non-Normality and Correlated Errors

Statisticians pay considerable attention to the distribution of the residuals. It

turns out that ordinary least squares (see “Least Squares”) are unbiased, and

in some cases the “optimal” estimator, under a wide range of distributional

assumptions. This means that in most problems, data scientists do not need

to be too concerned with the distribution of the residuals.

The distribution of the residuals is relevant mainly for the validity of formal

statistical inference (hypothesis tests and p-values), which is of minimal



importance to data scientists concerned mainly with predictive accuracy.

For formal inference to be fully valid, the residuals are assumed to be

normally distributed, have the same variance, and be independent. One area

where this may be of concern to data scientists is the standard calculation of

confidence intervals for predicted values, which are based upon the

assumptions about the residuals (see “Confidence and Prediction

Intervals”).

Heteroskedasticity is the lack of constant residual variance across the range

of the predicted values. In other words, errors are greater for some portions

of the range than for others. The ggplot2 package has some convenient

tools to analyze residuals.

The following code plots the absolute residuals versus the predicted values

for the lm_98105 regression fit in “Outliers”.

df <- data.frame(

resid = residuals(lm_98105),

pred = predict(lm_98105))

ggplot(df, aes(pred, abs(resid))) +

geom_point() +

geom_smooth()

Figure 4-7 shows the resulting plot. Using geom_smooth, it is easy to

superpose a smooth of the absolute residuals. The function calls the loess

method to produce a visual smooth to estimate the relationship between the

variables on the x-axis and y-axis in a scatterplot (see Scatterplot

Smoothers).



Figure 4-7. A plot of the absolute value of the residuals versus the predicted values

Evidently, the variance of the residuals tends to increase for higher-valued

homes, but is also large for lower-valued homes. This plot indicates that

lm_98105 has heteroskedastic errors.

Why Would a Data Scientist Care about Heteroskedasticity?

Heteroskedasticity indicates that prediction errors differ for different ranges

of the predicted value, and may suggest an incomplete model. For example,



the heteroskedasticity in lm_98105 may indicate that the regression has left

something unaccounted for in high- and low-range homes.

Figure 4-8 is a histogram of the standarized residuals for the lm_98105

regression. The distribution has decidely longer tails than the normal

distribution, and exhibits mild skewness toward larger residuals.

Figure 4-8. A histogram of the residuals from the regression of the housing data



Statisticians may also check the assumption that the errors are independent.

This is particularly true for data that is collected over time. The Durbin

Watson statistic can be used to detect if there is significant autocorrelation

in a regression involving time series data.

Even though a regression may violate one of the distributional assumptions,

should we care? Most often in data science, the interest is primarily in

predictive accuracy, so some review of heteroskedasticity may be in order.

You may discover that there is some signal in the data that your model has

not captured. Satisfying distributional assumptions simply for the sake of

validating formal statistical inference (p-values, F-statistics, etc.), however,

is not that important for the data scientist.

Scatterplot Smoothers

Regression is about modeling the relationship between the response and

predictor variables. In evaluating a regression model, it is useful to use a

scatterplot smoother to visually highlight relationships between two

variables.

For example, in Figure 4-7, a smooth of the relationship between the

absolute residuals and the predicted value shows that the variance of the

residuals depends on the value of the residual. In this case, the loess

function was used; loess works by repeatedly fitting a series of local

regressions to contiguous subsets to come up with a smooth. While loess

is probably the most commonly used smoother, other scatterplot smoothers

are available in R, such as super smooth (supsmu) and kernal smoothing

(ksmooth). For the purposes of evaluating a regression model, there is

typically no need to worry about the details of these scatterplot smooths.

Partial Residual Plots and Nonlinearity

Partial residual plots are a way to visualize how well the estimated fit

explains the relationship between a predictor and the outcome. Along with

detection of outliers, this is probably the most important diagnostic for data



scientists. The basic idea of a partial residual plot is to isolate the

relationship between a predictor variable and the response, taking into

account all of the other predictor variables. A partial residual might be

thought of as a “synthetic outcome” value, combining the prediction based

on a single predictor with the actual residual from the full regression

equation. A partial residual for predictor is the ordinary residual plus

:the regression term associated with

iswhere the estimated regression coefficient. The predict function in R

has an option to return the individual regression terms :

termspartial_resid<- predict(lm_98105,<- resid(lm_98105)type='terms')

+ terms

The partial residual plot displays the on the x-axis and the partial

residuals on the y-axis. Using ggplot2 makes it easy to superpose a smooth

of the partial residuals.

df <- data.frame(SqFtTotLivingTerms = terms[,= house_98105[,'SqFtTotLiving'],'SqFtTotLiving'],PartialResid = partial_resid[, 'SqFtTotLiving'])ggplot(df, aes(SqFtTotLiving, PartialResid)) +

geom_point(shape=1)geom_smooth(linetype=2)+ scale_shape(solid+ = FALSE) +

geom_line(aes(SqFtTotLiving, Terms))

The resulting plot is shown in Figure 4-9. The partial residual is an estimate

of the contribution that SqFtTotLiving adds to the sales price. The



relationship between SqFtTotLiving and the sales price is evidently

nonlinear. The regression line underestimates the sales price for homes less

than 1,000 square feet and overestimates the price for homes between 2,000

and 3,000 square feet. There are too few data points above 4,000 square

feet to draw conclusions for those homes.

Figure 4-9. A partial residual plot for the variable SqFtTotLiving



This nonlinearity makes sense in this case: adding 500 feet in a small home

makes a much bigger difference than adding 500 feet in a large home. This

suggests that, instead of a simple linear term for SqFtTotLiving, a

nonlinear term should be considered (see “Polynomial and Spline

Regression”).

Key Ideas

While outliers can cause problems for small data sets, the primary

interest with outliers is to identify problems with the data, or locate

anomalies.

Single records (including regression outliers) can have a big

influence on a regression equation with small data, but this effect

washes out in big data.

If the regression model is used for formal inference (p-values and

the like), then certain assumptions about the distribution of the

residuals should be checked. In general, however, the distribution

of residuals is not critical in data science.

The partial residuals plot can be used to qualitatively assess the fit

for each regression term, possibly leading to alternative model

specification.

Polynomial and Spline Regression

The relationship between the response and a predictor variable is not

necessarily linear. The response to the dose of a drug is often nonlinear:

doubling the dosage generally doesn’t lead to a doubled response. The

demand for a product is not a linear function of marketing dollars spent

since, at some point, demand is likely to be saturated. There are several



ways that regression can be extended to capture these nonlinear effects.

Key Terms for Nonlinear Regression

Polynomial regression

Adds polynomial terms (squares, cubes, etc.) to a regression.

Spline regression

Fitting a smooth curve with a series of polynomial segments.

Knots

Values that separate spline segments.

Generalized additive models

Spline models with automated selection of knots.

Synonyms

GAM

Nonlinear Regression

When statisticians talk about nonlinear regression, they are referring to

models that can’t be fit using least squares. What kind of models are

nonlinear? Essentially all models where the response cannot be expressed

as a linear combination of the predictors or some transform of the

predictors. Nonlinear regression models are harder and computationally

more intensive to fit, since they require numerical optimization. For this

reason, it is generally preferred to use a linear model if possible.

Polynomial

Polynomial regression involves including polynomial terms to a regression

equation. The use of polynomial regression dates back almost to the



development of regression itself with a paper by Gergonne in 1815. For

example, a quadratic regression between the response Y and the predictor X

would take the form:

Polynomial regression can be fit in R through the poly function. For

example, the following fits a quadratic polynomial for SqFtTotLiving

with the King County housing data:

lm(AdjSalePrice ~ poly(SqFtTotLiving, 2) + SqFtLot +

BldgGrade + Bathrooms + Bedrooms,

data=house_98105)

Call:

lm(formula = AdjSalePrice ~ poly(SqFtTotLiving, 2) + SqFtLot +

BldgGrade + Bathrooms + Bedrooms, data = house_98105)

Coefficients:

(Intercept) poly(SqFtTotLiving, 2)1

-402530.47 3271519.49poly(SqFtTotLiving, 2)2 SqFtLot

776934.02 32.56

BldgGrade Bathrooms

135717.06 -1435.12

Bedrooms

-9191.94

There are now two coefficients associated with SqFtTotLiving: one for the

linear term and one for the quadratic term.

The partial residual plot (see “Partial Residual Plots and Nonlinearity”)

indicates some curvature in the regression equation associated with

SqFtTotLiving. The fitted line more closely matches the smooth (see

“Splines”) of the partial residuals as compared to a linear fit (see Figure 4

10).



Figure 4-10. A polynomial regression fit for the variable SqFtTotLiving (solid line)

versus a smooth (dashed line; see the following section about splines)

Splines

Polynomial regression only captures a certain amount of curvature in a

nonlinear relationship. Adding in higher-order terms, such as a cubic

quartic polynomial, often leads to undesirable “wiggliness” in the

regression equation. An alternative, and often superior, approach to



modeling nonlinear relationships is to use splines. Splines provide a way to

smoothly interpolate between fixed points. Splines were originally used by

draftsmen to draw a smooth curve, particularly in ship and aircraft building.

The splines were created by bending a thin piece of wood using weights,

referred to as “ducks”; see Figure 4-11.

Figure 4-11. Splines were originally created using bendable wood and “ducks,”

and were used as a draftsman tool to fit curves. Photo courtesy Bob Perry.

The technical definition of a spline is a series of piecewise continuous

polynomials. They were first developed during World War II at the US

Aberdeen Proving Grounds by I. J. Schoenberg, a Romanian

mathematician. The polynomial pieces are smoothly connected at a series

of fixed points in a predictor variable, referred to as knots. Formulation of

splines is much more complicated than polynomial regression; statistical

software usually handles the details of fitting a spline. The R package

splines includes the function bs to create a b-spline term in a regression

model. For example, the following adds a b-spline term to the house

regression model:



library(splines)

knots <- quantile(house_98105$SqFtTotLiving, p=c(.25, .5, .75))

lm_spline <- lm(AdjSalePrice ~ bs(SqFtTotLiving, knots=knots,

degree=3) +

SqFtLot + Bathrooms + Bedrooms + BldgGrade, data=house_98105)

Two parameters need to be specified: the degree of the polynomial and the

location of the knots. In this case, the predictor SqFtTotLiving is included

in the model using a cubic spline (degree=3). By default, bs places knots at

the boundaries; in addition, knots were also placed at the lower quartile, the

median quartile, and the upper quartile.

In contrast to a linear term, for which the coefficient has a direct meaning,

the coefficients for a spline term are not interpretable. Instead, it is more

useful to use the visual display to reveal the nature of the spline fit.

Figure 4-12 displays the partial residual plot from the regression. In

contrast to the polynomial model, the spline model more closely matches

the smooth, demonstrating the greater flexibility of splines. In this case, the

line more closely fits the data. Does this mean the spline regression is a

better model? Not necessarily: it doesn’t make economic sense that very

small homes (less than 1,000 square feet) would have higher value than

slightly larger homes. This is possibly an artifact of a confounding variable;

see “Confounding Variables”.



Figure 4-12. A spline regression fit for the variable SqFtTotLiving (solid line)

compared to a smooth (dashed line)

Generalized Additive Models

Suppose you suspect a nonlinear relationship between the response and a

predictor variable, either by a priori knowledge or by examining the

regression diagnostics. Polynomial terms may not flexible enough to

capture the relationship, and spline terms require specifying the knots.



Generalized additive models, or GAM, are a technique to automatically fit a

spline regression. The gam package in R can be used to fit a GAM model to

the housing data:

library(mgcv)lm_gam <- gam(AdjSalePrice ~ s(SqFtTotLiving) + SqFtLot +

Bathrooms + Bedrooms + BldgGrade,

data=house_98105)

The term s(SqFtTotLiving) tells the gam function to find the “best” knots

for a spline term (see Figure 4-13).



Figure 4-13. A GAM regression fit for the variable SqFtTotLiving (solid line)

compared to a smooth (dashed line)



Key Ideas

Outliers in a regression are records with a large residual.

Multicollinearity can cause numerical instability in fitting the

regression equation.

A confounding variable is an important predictor that is omitted

from a model and can lead to a regression equation with spurious

relationships.

An interaction term between two variables is needed if the effect of

one variable depends on the level of the other.

Polynomial regression can fit nonlinear relationships between

predictors and the outcome variable.

Splines are series of polynomial segments strung together, joining

at knots.

Generalized additive models (GAM) automate the process of

specifying the knots in splines.

Further Reading

For more on spline models and GAMS, see The Elements of Statistical

Learning by Trevor Hastie, Robert Tibshirani, and Jerome Friedman, and

its shorter cousin based on R, An Introduction to Statistical Learning by

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani; both

are Springer books.

Summary

Perhaps no other statistical method has seen greater use over the years than

regression—the process of establishing a relationship between multiple

predictor variables and an outcome variable. The fundamental form is



linear: each predictor variable has a coefficient that describes a linear

relationship between the predictor and the outcome. More advanced forms

of regression, such as polynomial and spline regression, permit the

relationship to be nonlinear. In classical statistics, the emphasis is on

finding a good fit to the observed data to explain or describe some

phenomenon, and the strength of this fit is how traditional (“in-sample”)

metrics are used to assess the model. In data science, by contrast, the goal is

typically to predict values for new data, so metrics based on predictive

accuracy for out-of-sample data are used. Variable selection methods are

used to reduce dimensionality and create more compact models.

This and subsequent sections in this chapter © 2017 Datastats, LLC, Peter

Bruce and Andrew Bruce, used by permission.

1

In Bayesian statistics, the true value is assumed to be a random variable

with a specified distribution. In the Bayesian context, instead of estimates

of unknown parameters, there are posterior and prior distributions.

2

The -1 argument in the model.matrix produces one hot encoding

representation (by removing the intercept, hence the “-”). Otherwise, the

default in R is to produce a matrix with P – 1 columns with the first factor

level as a reference.

3

This is unintuitive, but can be explained by the impact of location as a

confounding variable; see “Confounding Variables”.

4

There are 82 zip codes in King County, several with just a handful of

sales. An alternative to directly using zip code as a factor variable,

5

ZipGroup clusters similar zip codes into a single group. See “Factor

Variables with Many Levels” for details.

The term hat-value comes from the notion of the hat matrix in regression.
6

Multiple linear regression can be expressed by the formula

where is the hat matrix. The hat-values correspond to the diagonal of



.

7 The coefficient for Bathrooms becomes negative, which is unintuitive.

Location has not been taken into account and the zip code 98105 contains

areas of disparate types of homes. See “Confounding Variables” for a

discussion of confounding variables.



Chapter 5. Classification

Data scientists are often faced with a problem that requires an automated

decision. Is an email an attempt at phishing? Is a customer likely to churn?

Is the web user likely to click on an advertisement? These are all

classification problems. Classification is perhaps the most important form

of prediction: the goal is to predict whether a record is a 0 or a 1

(phishing/not-phishing, click/don’t click, churn/don’t churn), or in some

cases, one of several categories (for example, Gmail’s filtering of your

inbox into “primary,” “social,” “promotional,” or “forums”).

Often, we need more than a simple binary classification: we want to know

the predicted probability that a case belongs to a class.

Rather than having a model simply assign a binary classification, most

algorithms can return a probability score (propensity) of belonging to the

class of interest. In fact, with logistic regression, the default output from R

is on the log-odds scale, and this must be transformed to a propensity. A

sliding cutoff can then be used to convert the propensity score to a decision.

The general approach is as follows:

1. Establish a cutoff probability for the class of interest above which we

consider a record as belonging to that class.

2. Estimate (with any model) the probability that a record belongs to the

class of interest.

3. If that probability is above the cutoff probability, assign the new record

to the class of interest.

The higher the cutoff, the fewer records predicted as 1—that is, belonging

to the class of interest. The lower the cutoff, the more records predicted as

1.

This chapter covers several key techniques for classification and estimating



propensities; additional methods that can be used both for classification and

numerical prediction are described in the next chapter.

More Than Two Categories?

The vast majority of problems involve a binary response. Some

classification problems, however, involve a response with more than

two possible outcomes. For example, at the anniversary of a

customer’s subscription contract, there might be three outcomes: the

customer leaves, or “churns” (Y=2), goes on a month-to-month (Y=1)

contract, or signs a new long-term contract (Y=0). The goal is to

predict Y = j for j = 0, 1 or 2. Most of the classification methods in

this chapter can be applied, either directly or with modest adaptations,

to responses that have more than two outcomes. Even in the case of

more than two outcomes, the problem can often be recast into a series

of binary problems using conditional probabilities. For example, to

predict the outcome of the contract, you can solve two binary

prediction problems:

Predict whether Y = 0 or Y > 0.

Given that Y > 0, predict whether Y = 1 or Y = 2.

In this case, it makes sense to break up the problem into two cases:

whether the customer churns, and if they don’t churn, what type of

contract they will choose. From a model-fitting viewpoint, it is often

advantageous to convert the multiclass problem to a series of binary

problems. This is particularly true when one category is much more

common than the other categories.

Naive Bayes

The naive Bayes algorithm uses the probability of observing predictor



values, given an outcome, to estimate the probability of observing outcome

Y= i, given a set of predictor values.1

Key Terms for Naive Bayes

Conditional probability

The probability of observing some event (say X = i) given some

.other event (say Y = i), written as

Posterior probability

The probability of an outcome after the predictor information has

been incorporated (in contrast to the prior probability of outcomes,

not taking predictor information into account).

To understand Bayesian classification, we can start out by imagining “non

naive” Bayesian classification. For each record to be classified:

1.

3.

Find all the other records with the same predictor profile (i.e., where the

predictor values are the same).

2. Determine what classes those records belong to and which class is most

prevalent (i.e., probable).

Assign that class to the new record.

The preceding approach amounts to finding all the records in the sample

that are exactly like the new record to be classified in the sense that all the

predictor values are identical.

Note

Predictor variables must be categorical (factor) variables in the standard

naive Bayes algorithm. See “Numeric Predictor Variables” for two

workarounds for using continuous variables.



Why Exact Bayesian Classification Is Impractical

When the number of predictor variables exceeds a handful, many of the

records to be classified will be without exact matches. This can be

understood in the context of a model to predict voting on the basis of

demographic variables. Even a sizable sample may not contain even a

single match for a new record who is a male Hispanic with high income

from the US Midwest who voted in the last election, did not vote in the

prior election, has three daughters and one son, and is divorced. And this is

just eight variables, a small number for most classification problems. The

addition of just a single new variable with five equally frequent categories

reduces the probability of a match by a factor of 5.

Warning

Despite its name, naive Bayes is not considered a method of Bayesian

statistics. Naive Bayes is a data–driven, empirical method requiring

relatively little statistical expertise. The name comes from the Bayes rule–

like calculation in forming the predictions—specifically the initial

calculation of predictor value probabilities given an outcome, and then the

final calculation of outcome probabilities.

The Naive Solution

In the naive Bayes solution, we no longer restrict the probability calculation

to those records that match the record to be classified. Instead, we use the

entire data set. The naive Bayes modification is as follows:

1. For a binary response Y = i (i = 0 or 1), estimate the individual

conditional probabilities for each predictor ; these

are the probabilities that the predictor value is in the record when we

observe Y =
i.
This probability

is
estimated

by the
proportion

of
X

values among the Y = i records in the training set.

j

2. Multiply these probabilities by each other, and then by the proportion of

records belonging to Y = i.



3. Repeat steps 1 and 2 for all the classes.

4. Estimate a probability for outcome i by taking the value calculated in

step 2 for class i and dividing it by the sum of such values for all classes.

5. Assign the record to the class with the highest probability for this set of

predictor values.

This naive Bayes algorithm can also be stated as an equation for the

probability of observing outcome Y = i, given a set of predictor values

isThe value of a scaling factor to ensure the

probability is between 0 and 1 and does not depend on Y:

Why is this formula called “naive”? We have made a simplifying

assumption that the exact conditional probability of a vector of predictor

values, given observing an outcome, is sufficiently well estimated by the

.Inproduct of the individual conditional probabilities

other words, in estimating

is

, we are assuminginstead of

independent of all the other predictor variables .for

Several packages in R can be used to estimate a naive Bayes model. The

following fits a model using the klaR package:

:



library(klaR)naive_model <- NaiveBayes(outcome ~ purpose_ + home_ + emp_len_,

data = na.omit(loan_data))

naive_model$table$purpose_

var

grouping credit_card debt_consolidation home_improvement

major_purchase

paid off 0.1857711 0.5523427 0.07153354

0.05541148

default 0.1517548 0.5777144 0.05956086

0.03708506

var

grouping medical other small_business

paid off 0.01236169 0.09958506 0.02299447

default 0.01434993 0.11415111 0.04538382

$home_

var

grouping MORTGAGE OWN RENT

paid off 0.4966286 0.08043741 0.4229340

default 0.4327455 0.08363589 0.4836186

$emp_len_

var

grouping > 1 Year < 1 Year

paid off 0.9690526 0.03094744

default 0.9523686 0.04763140

The output from the model is the conditional probabilities

new loan:

. The model can be used to predict the outcome of a

new_loan

purpose_ home_ emp_len_

1 small_business MORTGAGE > 1 Year

In this case, the model predicts a default:



predict(naive_model, new_loan)

$class

[1] default

Levels: paid off default

$posterior

paid off default

[1,] 0.3717206 0.6282794

The prediction also returns a posterior estimate of the probability of

default. The naive Bayesian classifier is known to produce biased

estimates. However, where the goal is to rank records according to the

probability that Y = 1, unbiased estimates of probability are not needed and

naive Bayes produces good results.

Numeric Predictor Variables

From the definition, we see that the Bayesian classifier works only with

categorical predictors (e.g., with spam classification, where presence or

absence of words, phrases, characters, and so on, lies at the heart of the

predictive task). To apply naive Bayes to numerical predictors, one of two

approaches must be taken:

Bin and convert the numerical predictors to categorical predictors and

apply the algorithm of the previous section.

Use a probability model—for example, the normal distribution (see

“Normal Distribution”)—to estimate the conditional probability

.

Caution

When a predictor category is absent in the training data, the algorithm

assigns zero probability to the outcome variable in new data, rather than

simply ignoring this variable and using the information from other

variables, as other methods might. This is something to pay attention to



when binning continuous variables.

Key Ideas

Naive Bayes works with categorical (factor) predictors and

outcomes.

It asks, “Within each outcome category, which predictor categories

are most probable?”

That information is then inverted to estimate probabilities of

outcome categories, given predictor values.

Further Reading

Elements of Statistical Learning, 2nd ed., by Trevor Hastie, Robert

Tibshirani, and Jerome Friedman (Springer, 2009).

There is a full chapter on naive Bayes in Data Mining for Business

Analytics, 3rd ed., by Galit Shmueli, Peter Bruce, and Nitin Patel

(Wiley, 2016, with variants for R, Excel, and JMP).

Discriminant Analysis

Discriminant analysis is the earliest statistical classifier; it was introduced

by R. A. Fisher in 1936 in an article published in the Annals of Eugenics

journal.2



Key Terms for Discriminant Analysis

Covariance

A measure of the extent to which one variable varies in concert

with another (i.e., similar magnitude and direction).

Discriminant function

The function that, when applied to the predictor variables,

maximizes the separation of the classes.

Discriminant weights

The scores that result from the application of the discriminant

function, and are used to estimate probabilities of belonging to one

class or another.

While discriminant analysis encompasses several techniques, the most

commonly used is linear discriminant analysis, or LDA. The original

method proposed by Fisher was actually slightly different from LDA, but

the mechanics are essentially the same. LDA is now less widely used with

the advent of more sophisticated techniques, such as tree models and

logistic regression.

However, you may still encounter LDA in some applications and it has

links to other more widely used methods (such as principal components

analysis; see “Principal Components Analysis”). In addition, discriminant

analysis can provide a measure of predictor importance, and it is used as a

computationally efficient method of feature selection.

Warning

Linear discriminant analysis should not be confused with Latent Dirichlet

Allocation, also referred to as LDA. Latent Dirichlet Allocation is used in

text and natural language processing and is unrelated to linear discriminant



analysis.

Covariance Matrix

To understand discriminant analysis, it is first necessary to introduce the

concept of covariance between two or more variables. The covariance

measures the relationship between two variables . Denote theand

mean for each variable bybetween and is given by:and (see “Mean”). The covariance

where n is the number of records (note that we divide by n – 1 instead of n:

see “Degrees of Freedom, and n or n – 1?”).

As with the correlation coefficient (see “Correlation”), positive values

indicate a positive relationship and negative values indicate a negative

relationship. Correlation, however, is constrained to be between –1 and 1,

whereas covariance is on the same scale as the variables . Theand

covariance matrix consists of the individual variablefor and

variances, , on the diagonal (where row and column are the same

variable) and the covariances between variable pairs on the off-diagonals.

and



Recall that the standard deviation is used to normalize a variable to a z

score; the covariance matrix is used in a multivariate extension of this

standardization process. This is known as Mahalanobis distance (see Other

Distance Metrics) and is related to the LDA function.

Fisher’s Linear Discriminant

Note

For simplicity, we focus on a classification problem in which we want to

predict a binary outcome y using just two continuous numeric variables

. Technically, discriminant analysis assumes the predictor

variables are normally distributed continuous variables, but, in practice, the

method works well even for nonextreme departures from normality, and for

binary predictors. Fisher’s linear discriminant distinguishes variation

between groups, on the one hand, from variation within groups on the other.

Specifically, seeking to divide the records into two groups, LDA focuses on

maximizing the “between” sum of squares (measuring the

variation between the two groups) relative to the “within” sum of squares

groups correspond to the records for which y = 0 and the

records for which y = 1. The method finds the linear

(measuring the within-group variation). In this case, the two



combination that maximizes that sum of squares ratio.

The between sum of squares is the squared distance between the two group

means, and the within sum of squares is the spread around the means within

each group, weighted by the covariance matrix. Intuitively, by maximizing

the between sum of squares and minimizing the within sum of squares, this

method yields the greatest separation between the two groups.

A Simple Example

The MASS package, associated with the book Modern Applied Statistics with

S by W. N. Venables and B. D. Ripley (Springer, 1994), provides a

function for LDA with R. The following applies this function to a sample

of loan data using two predictor variables, borrower_score and

payment_inc_ratio, and prints out the estimated linear discriminator

weights.

library(MASS)loan_lda <- lda(outcome ~ borrower_score + payment_inc_ratio,

data=loan3000)loan_lda$scaling

LD1

borrower_score -6.2962811

payment_inc_ratio 0.1288243

Using Discriminant Analysis for Feature Selection

If the predictor variables are normalized prior to running LDA, the



discriminator weights are measures of variable importance, thus providing a

computationally efficient method of feature selection.

The lda function can predict the probability of “default” versus “paid off”:

pred <- predict(loan_lda)

head(pred$posterior)

paid off default

25333 0.5554293 0.4445707

27041 0.6274352 0.3725648

7398 0.4014055 0.5985945

35625 0.3411242 0.6588758

17058 0.6081592 0.3918408

2986 0.6733245 0.3266755

A plot of the predictions helps illustrate how LDA works. Using the output

from the predict function, a plot of the estimated probability of default is

produced as follows:

lda_df <- cbind(loan3000, prob_default=pred$posterior[,'default'])ggplot(data=lda_df,

aes(x=borrower_score, y=payment_inc_ratio,

color=prob_default)) +

geom_point(alpha=.6) +

scale_color_gradient2(low='white', high='blue') +

geom_line(data=lda_df0, col='green', size=2, alpha=.8) +

The resulting plot is shown in Figure 5-1.



Figure 5-1. LDA prediction of loan default using two variables: a score of the

borrower’s creditworthiness and the payment to income ratio.

Using the discriminant function weights, LDA splits the predictor space

into two regions as shown by the solid line. The predictions farther away

from the line have a higher level of confidence (i.e., a probability further

away from 0.5).

Extensions of Discriminant Analysis

More predictor variables: while the text and example in this section used

just two predictor variables, LDA works just as well with more than two

predictor variables. The only limiting factor is the number of records

(estimating the covariance matrix requires a sufficient number of records

per variable, which is typically not an issue in data science applications).



Quadratic Discriminant Analysis: There are other variants of discriminant

analysis. The best known is quadratic discriminant analysis (QDA). Despite

its name, QDA is still a linear discriminant function. The main difference is

that in LDA, the covariance matrix is assumed to be the same for the two

groups corresponding to Y = 0 and Y = 1. In QDA, the covariance matrix is

allowed to be different for the two groups. In practice, the difference in

most applications is not critical.

Key Ideas for Discriminant Analysis

Discriminant analysis works with continuous or categorical

predictors, as well as categorical outcomes.

Using the covariance matrix, it calculates a linear discriminant

function, which is used to distinguish records belonging to one

class from those belonging to another.

This function is applied to the records to derive weights, or scores,

for each record (one weight for each possible class) that determines

its estimated class.

Further Reading

Elements of Statistical Learning, 2nd ed., by Trevor Hastie, Robert

Tibshirani, Jerome Freidman, and its shorter cousin, An Introduction to

Statistical Learning, by Gareth James, Daniela Witten, Trevor Hastie,

and Robert Tibshirani (both from Springer). Both have a section on

discriminant analysis.

Data Mining for Business Analytics, 3rd ed., by Galit Shmueli, Peter

Bruce, and Nitin Patel (Wiley, 2016, with variants for R, Excel, and

JMP) has a full chapter on discriminant analysis.



For historical interest, Fisher’s original article on the topic, “The Use of

Multiple Measurements in Taxonomic Problems,” as published in 1936

in Annals of Eugenics (now called Annals of Genetics) can be found

online.

Logistic Regression

Logistic regression is analogous to multiple linear regression, except the

outcome is binary. Various transformations are employed to convert the

problem to one in which a linear model can be fit. Like discriminant

analysis, and unlike K-Nearest Neighbor and naive Bayes, logistic

regression is a structured model approach, rather than a data-centric

approach. Due to its fast computational speed and its output of a model that

lends itself to rapid scoring of new data, it is a popular method.

Key Terms for Logistic Regression

Logit

The function that maps the probability of belonging to a class with

a range from ± ∞ (instead of 0 to 1).

Synonym

Log odds (see below)

Odds

The ratio of “success” (1) to “not success” (0).

Log odds

The response in the transformed model (now linear), which gets

mapped back to a probability.

How do we get from a binary outcome variable to an outcome variable that



can be modeled in linear fashion, then back again to a binary outcome?

Logistic Response Function and Logit

The key ingredients are the logistic response function and the logit, in

which we map a probability (which is on a 0–1 scale) to a more expansive

scale suitable for linear modeling.

The first step is to think of the outcome variable not as a binary label, but as

the probability p that the label is a “1.” Naively, we might be tempted to

model p as a linear function of the predictor variables:

However, fitting this model does not ensure that p will end up between 0

and 1, as a probability must.

Instead, we model p by applying a logistic response or inverse logit

function to the predictors:

This transform ensures that the p stays between 0 and 1.

To get the exponential expression out of the denominator, we consider odds

instead of probabilities. Odds, familiar to bettors everywhere, are the ratio

of “successes” (1) to “nonsuccesses” (0). In terms of probabilities, odds are

the probability of an event divided by the probability that the event will not

occur. For example, if the probability that a horse will win is 0.5, the

probability of “won’t win” is (1–0.5) = 0.5, and the odds are 1.0.



We can obtain the probability from the odds using the inverse odds

function:

We combine this with the logistic response function, shown earlier, to get:

Finally, taking the logarithm of both sides, we get an expression that

involves a linear function of the predictors:

The log-odds function, also known as the logit function, maps the

probability p from : seeto any value

Figure 5-2. The transformation circle is complete; we have used a linear

model to predict a probability, which, in turn, we can map to a class label

by applying a cutoff rule—any record with a probability greater than the

cutoff is classified as a 1.



Figure 5-2. The function that maps a probability to a scale suitable for a linear

model (logit)

Logistic Regression and the GLM

The response in the logistic regression formula is the log odds of a binary

outcome of 1. We only observe the binary outcome, not the log odds, so

special statistical methods are needed to fit the equation. Logistic

regression is a special instance of a generalized linear model (GLM)

developed to extend linear regression to other settings.

In R, to fit a logistic regression, the glm function is used with the family

parameter set to binomial. The following code fits a logistic regression to

the personal loan data introduced in “K-Nearest Neighbors”.



logistic_model

Call: glm(formula = outcome ~ payment_inc_ratio + purpose_ +

home_ +

emp_len_ + borrower_score, family = "binomial", data =

loan_data)

Coefficients:

(Intercept) payment_inc_ratio

1.26982 0.08244

purpose_debt_consolidation purpose_home_improvement

0.25216 0.34367

purpose_major_purchase purpose_medical

0.24373 0.67536

purpose_other purpose_small_business

0.59268 1.21226

home_OWN home_RENT

0.03132 0.16867

emp_len_ < 1 Year borrower_score

0.44489 -4.63890

Degrees of Freedom: 46271 Total (i.e. Null); 46260 Residual

Null Deviance: 64150

Residual Deviance: 58530 AIC: 58550

The response is outcome, which takes a 0 if the loan is paid off and 1 if the

loan defaults. purpose_ and home_ are factor variables representing the

purpose of the loan and the home ownership status. As in regression, a

factor variable with Plevels is represented with P – 1 columns. By default

in R, the reference coding is used and the levels are all compared to the

reference level (see “Factor Variables in Regression”). The reference levels

for these factors are credit_card and MORTGAGE, respectively. The

variable borrower_score is a score from 0 to 1 representing the

creditworthiness of the borrower (from poor to excellent). This variable

was created from several other variables using K-Nearest Neighbor: see

“KNN as a Feature Engine”.

Generalized Linear Models

Generalized linear models (GLMs) are the second most important class of



models besides regression. GLMs are characterized by two main

components:

A probability distribution or family (binomial in the case of logistic

regression)

A link function mapping the response to the predictors (logit in the case

of logistic regression)

Logistic regression is by far the most common form of GLM. A data

scientist will encounter other types of GLMs. Sometimes a log link

function is used instead of the logit; in practice, use of a log link is unlikely

to lead to very different results for most applications. The poisson

distribution is commonly used to model count data (e.g., the number of

times a user visits a web page in a certain amount of time). Other families

include negative binomial and gamma, often used to model elapsed time

(e.g., time to failure). In contrast to logistic regression, application of

GLMs with these models is more nuanced and involves greater care. These

are best avoided unless you are familiar with and understand the utility and

pitfalls of these methods.

Predicted Values from Logistic Regression

The predicted value from logistic regression is in terms of the log odds:

. The predicted probability is given by the

logistic response function:



For example, look at the predictions from the model logistic_model:

pred <- predict(logistic_model)

summary(pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.728000 -0.525100 -0.005235 0.002599 0.513700 3.658000

Converting these values to probabilities is a simple transform:

prob <- 1/(1 + exp(-pred))

> summary(prob)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.06132 0.37170 0.49870 0.50000 0.62570 0.97490

These are on a scale from 0 to 1 and don’t yet declare whether the predicted

value is default or paid off. We could declare any value greater than 0.5 as

default, analogous to the K-Nearest Neighbors classifier. In practice, a

lower cutoff is often appropriate if the goal is to identify members of a rare

class (see “The Rare Class Problem”).

Interpreting the Coefficients and Odds Ratios

One advantage of logistic regression is that it produces a model that can be

scored to new data rapidly, without recomputation. Another is the relative

ease of interpretation of the model, as compared with other classification

methods. The key conceptual idea is understanding an odds ratio. The odds

ratio is easiest to understand for a binary factor variable X:

This is interpreted as the odds that Y = 1 when X = 1 versus the odds that Y

= 1 when X = 0. If the odds ratio is 2, then the odds that Y = 1 are two times

higher when X = 1 versus X = 0.



Why bother with an odds ratio, instead of probabilities? We work with odds

because the coefficient in the logistic regression is the log of the odds

ratio for .

An example will make this more explicit. For the model fit in “Logistic

Regression and the GLM”, the regression coefficient for

purpose_small_business is 1.21226. This means that a loan to a small

business compared to a loan to pay off credit card debt reduces the odds of

defaulting versus being paid off by .

Clearly, loans for the purpose of creating or expanding a small business are

considerably riskier than other types of loans.

Figure 5-3 shows the relationship between the odds ratio and log-odds ratio

for odds ratios greater than 1. Because the coefficients are on the log scale,

an increase of 1 in the coefficient results in an increase of

in the odds ratio.



Figure 5-3. The relationship between the odds ratio and the log-odds ratio

Odds ratios for numeric variables X can be interpreted similarly: they

measure the change in the odds ratio for a unit change in X. For example,

the effect of increasing the payment to income ratio from, say, 5 to 6

increases the odds of the loan defaulting by a factor of

. The variable borrower_score is a

score on the borrowers’ creditworthiness and ranges from 0 (low) to 1

(high). The odds of the best borrowers relative to the worst borrowers

defaulting on their loans is smaller by a factor of

. In other words, the default risk

from the borrowers with the poorest creditworthiness is 100 times greater



than that of the best borrowers!

Linear and Logistic Regression: Similarities and Differences

Multiple linear regression and logistic regression share many

commonalities. Both assume a parametric linear form relating the

predictors with the response. Exploring and finding the best model are done

in very similar ways. Generalities to the linear model to use a spline

transform of the predictor are equally applicable in the logistic regression

setting. Logistic regression differs in two fundamental ways:

The way the model is fit (least squares is not applicable)

The nature and analysis of the residuals from the model

Fitting the model

Linear regression is fit using least squares, and the quality of the fit is

evaluated using RMSE and R-squared statistics. In logistic regression

(unlike in linear regression), there is no closed-form solution and the model

must be fit using maximum likelihood estimation (MLE). Maximum

likelihood estimation is a process that tries to find the model that is most

likely to have produced the data we see. In the logistic regression equation,

the response is not 0 or 1 but rather an estimate of the log odds that the

response is 1. The MLE finds the solution such that the estimated log odds

best describes the observed outcome. The mechanics of the algorithm

involve a quasi-Newton optimization that iterates between a scoring step

(Fisher’s scoring), based on the current parameters, and an update to the

parameters to improve the fit.



Maximum Likelihood Estimation

More detail, if you like statistical symbols: start with a set of data

and a probability model

The goal of MLE is to find the set of parameters that maximizes the

.that depends on a set of parameters

; that is, it maximizes the

probability of observing..] In the fitting process, the model is evaluated using a metric called

deviance:

given the model

Lower deviance corresponds to a better fit.

value of

Fortunately, most users don’t need to concern themselves with the details of

the fitting algorithm since this is handled by the software. Most data

scientists will not need to worry about the fitting method, other than

understanding that it is a way to find a good model under certain

assumptions.

Handling Factor Variables

In logistic regression, factor variables should be coded as in linear

regression; see “Factor Variables in Regression”. In R and other software,

this is normally handled automatically and generally reference encoding is

used. All of the other classification methods covered in this chapter

typically use the one hot encoder representation (see “One Hot Encoder”).

Assessing the Model

Like other classification methods, logistic regression is assessed by how



accurately the model classifies new data (see “Evaluating Classification

Models”). As with linear regression, some additional standard statistical

tools are available to assess and improve the model. Along with the

estimated coefficients, R reports the standard error of the coefficients (SE),

a z-value, and a p-value:

summary(logistic_model)

Call:

glm(formula = outcome ~ payment_inc_ratio + purpose_ + home_ +

emp_len_ + borrower_score, family = "binomial", data =

loan_data)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.71430 -1.06806 -0.04482 1.07446 2.11672

Coefficients:

Estimate Std. Error z value Pr(>|z|)(Intercept) 1.269822 0.051929 24.453 < 2e-16

***

payment_inc_ratio 0.082443 0.002485 33.177 < 2e-16

***

purpose_debt_consolidation 0.252164 0.027409 9.200 < 2e-16

***

purpose_home_improvement 0.343674 0.045951 7.479 7.48e-14

***

purpose_major_purchase 0.243728 0.053314 4.572 4.84e-06

***

purpose_medical

0.675362 0.089803 7.520 5.46e-14

***

purpose_other

0.592678 0.039109 15.154 < 2e-16

***purpose_small_business 1.212264 0.062457 19.410 < 2e-16

***home_OWN 0.031320 0.037479 0.836 0.403home_RENT

0.168670 0.021041 8.016 1.09e-15***emp_len_ < 1 Year 0.444892 0.053342 8.340 < 2e-16

***

borrower_score -4.638902 0.082433 -56.275 < 2e-16

***



---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 64147 on 46271 degrees of freedom

Residual deviance: 58531 on 46260 degrees of freedom

AIC: 58555

Number of Fisher Scoring iterations: 4

Interpretation of the p-value comes with the same caveat as in regression,

and should be viewed more as a relative indicator of variable importance

(see “Assessing the Model”) than as a formal measure of statistical

significance. A logistic regression model, which has a binary response,

does not have an associated RMSE or R-squared. Instead, a logistic

regression model is typically evaluated using more general metrics for

classification; see “Evaluating Classification Models”.

Many other concepts for linear regression carry over to the logistic

regression setting (and other GLMs). For example, you can use stepwise

regression, fit interaction terms, or include spline terms. The same concerns

regarding confounding and correlated variables apply to logistic regression

(see “Interpreting the Regression Equation”). You can fit generalized

additive models (see “Generalized Additive Models”) using the mgcv

package:

logistic_gam <- gam(outcome ~ s(payment_inc_ratio) + purpose_ +

home_ + emp_len_ + s(borrower_score),

data=loan_data, family='binomial')

One area where logistic regression differs is in the analysis of the residuals.

As in regression (see Figure 4-9), it is straightforward to compute partial

residuals:



terms <- predict(logistic_gam, type='terms')

partial_resid <- resid(logistic_model) + terms

df <- data.frame(payment_inc_ratio = loan_data[,

'payment_inc_ratio'],terms = terms[, 's(payment_inc_ratio)'],

partial_resid = partial_resid[,

's(payment_inc_ratio)'])

ggplot(df, aes(x=payment_inc_ratio, y=partial_resid, solid =

FALSE)) +

geom_point(shape=46, alpha=.4) +

geom_line(aes(x=payment_inc_ratio, y=terms),

color='red', alpha=.5, size=1.5) +

labs(y='Partial Residual')

The resulting plot is displayed in Figure 5-4. The estimated fit, shown by

the line, goes between two sets of point clouds. The top cloud corresponds

to a response of 1 (defaulted loans), and the bottom cloud corresponds to a

response of 0 (loans paid off). This is very typical of residuals from a

logistic regression since the output is binary. Partial residuals in logistic

regression, while less valuable than in regression, are still useful to confirm

nonlinear behavior and identify highly influential records.



Figure 5-4. Partial residuals from logistic regression

Warning

Some of the output from the summary function can effectively be ignored.

The dispersion parameter does not apply to logistic regression and is there

for other types of GLMs. The residual deviance and the number of scoring

iterations are related to the maximum likelihood fitting method; see

“Maximum Likelihood Estimation”.



Key Ideas for Logistic Regression

Logistic regression is like linear regression, except that the

outcome is a binary variable.

Several transformations are needed to get the model into a form

that can be fit as a linear model, with the log of the odds ratio as the

response variable.

After the linear model is fit (by an iterative process), the log odds is

mapped back to a probability.

Logistic regression is popular because it is computationally fast,

and produces a model that can be scored to new data without

recomputation.

Further Reading

1. The standard reference on logistic regression is Applied Logistic

Regression, 3rd ed., by David Hosmer, Stanley Lemeshow, and Rodney

Sturdivant (Wiley).

2. Also popular are two books by Joseph Hilbe: Logistic Regression

Models (very comprehensive) and Practical Guide to Logistic

Regression (compact), both from CRC Press.

3. Elements of Statistical Learning, 2nd ed., by Trevor Hastie, Robert

Tibshirani, Jerome Freidman, and its shorter cousin, An Introduction to

Statistical Learning, by Gareth James, Daniela Witten, Trevor Hastie,

and Robert Tibshirani (both from Springer) both have a section on

logistic regression.

4. Data Mining for Business Analytics, 3rd ed., by Galit Shmueli, Peter

Bruce, and Nitin Patel (Wiley, 2016, with variants for R, Excel, and



JMP) has a full chapter on logistic regression.

Evaluating Classification Models

It is common in predictive modeling to try out a number of different

models, apply each to a holdout sample (also called a test or validation

sample), and assess their performance. Fundamentally, this amounts to

seeing which produces the most accurate predictions.



Key Terms for Evaluating Classification Models

Accuracy

The percent (or proportion) of cases classified correctly.

Confusion matrix

A tabular display (2×2 in the binary case) of the record counts by

their predicted and actual classification status.

Sensitivity

The percent (or proportion) of 1s correctly classified.

Synonym

Recall

Specificity

The percent (or proportion) of 0s correctly classified.

Precision

The percent (proportion) of predicted 1s that are actually 1s.

ROC curve

A plot of sensitivity versus specificity.

Lift

A measure of how effective the model is at identifying

(comparitively rare) 1s at different probability cutoffs.

A simple way to measure classification performance is to count the

proportion of predictions that are correct.



In most classification algorithms, each case is assigned an “estimated

probability of being a 1.” The default decision point, or cutoff, is typically

0.50 or 50%. If the probability is above 0.5, the classification is “1,”

otherwise it is “0.” An alternative default cutoff is the prevalent probability

of 1s in the data.

3

Accuracy is simply a measure of total error:

Confusion Matrix

At the heart of classification metrics is the confusion matrix. The confusion

matrix is a table showing the number of correct and incorrect predictions

categorized by type of response. Several packages are available in R to

compute a confusion matrix, but in the binary case, it is simple to compute

one by hand.

To illustrate the confusion matrix, consider the logistic_gam model that

was trained on a balanced data set with an equal number of defaulted and

paid-off loans (see Figure 5-4). Following the usual conventions Y= 1

corresponds to the event of interest (e.g., default) and Y = 0 corresponds to

a negative (or usual) event (e.g., paid off). The following computes the

confusion matrix for the logistic_gam model applied to the entire

(unbalanced) training set:

pred <- predict(logistic_gam, newdata=train_set)

pred_y <- as.numeric(pred > 0)

true_y <- as.numeric(train_set$outcome=='default')

true_pos <- (true_y==1) & (pred_y==1)

true_neg <- (true_y==0) & (pred_y==0)

false_pos <- (true_y==0) & (pred_y==1)

false_neg <- (true_y==1) & (pred_y==0)

conf_mat <- matrix(c(sum(true_pos), sum(false_pos),sum(false_neg), sum(true_neg)), 2, 2)

colnames(conf_mat) <- c('Yhat = 1', 'Yhat = 0')



rownames(conf_mat)conf_mat <- c('Y = 1', 'Y = 0')

Yhat = 1 Yhat = 0

== 10 146358236 8501

14900

Y

Y

The predicted outcomes are columns and the true outcomes are the rows.

The diagonal elements of the matrix show the number of correct predictions

and the off-diagonal elements show the number of incorrect predictions.

For example, 6,126 defaulted loans were correctly predicted as a default,

but 17,010 defaulted loans were incorrectly predicted as paid off.

Figure 5-5 shows the relationship between the confusion matrix for a binary

reponse Yand different metrics (see “Precision, Recall, and Specificity” for

more on the metrics). As with the example for the loan data, the actual

response is along the rows and the predicted response is along the columns.

(You may see confusion matrices with this reversed.) The diagonal boxes

(upper left, lower right) show when the predictions correctly predict the

response. One important metric not explicitly called out is the false positive

rate (the mirror image of precision). When 1s are rare, the ratio of false

positives to all predicted positives can be high, leading to the unintuitive

situation where a predicted 1 is most likely a 0. This problem plagues

medical screening tests (e.g., mammograms) that are widely applied: due to

the relative rarity of the condition, positive test results most likely do not

mean breast cancer. This leads to much confusion in the public.



Figure 5-5. Confusion matrix for a binary response and various metrics

The Rare Class Problem

In many cases, there is an imbalance in the classes to be predicted, with one

class much more prevalent than the other—for example, legitimate

insurance claims versus fraudulent ones, or browsers versus purchasers at a

website. The rare class (e.g., the fraudulent claims) is usually the class of

more interest, and is typically designated 1, in contrast to the more

prevalent 0s. In the typical scenario, the 1s are the more important case, in

the sense that misclassifying them as 0s is costlier than misclassfying 0s as

1s. For example, correctly identifying a fraudulent insurance claim may

save thousands of dollars. On the other hand, correctly identifying a

nonfraudulent claim merely saves you the cost and effort of going through

the claim by hand with a more careful review (which is what you would do

if the claim were tagged as “fraudulent”).

In such cases, unless the classes are easily separable, the most accurate

classification model may be one that simply classifies everything as a 0.

For example, if only 0.1% of the browsers at a web store end up

purchasing, a model that predicts that each browser will leave without



purchasing will be 99.9% accurate. However, it will be useless. Instead, we

would be happy with a model that is less accurate overall, but is good at

picking out the purchasers, even if it misclassifies some nonpurchasers

along the way.

Precision, Recall, and Specificity

Metrics other than pure accuracy—metrics that are more nuanced—are

commonly used in evaluating classification models. Several of these have a

long history in statistics—especially biostatistics, where they are used to

describe the expected performance of diagnostic tests. The precision

measures the accuracy of a predicted positive outcome (see Figure 5-5):

The recall, also known as sensitivity, measures the strength of the model to

predict a positive outcome—the proportion of the 1s that it correctly

identifies (see Figure 5-5). The term sensitivity is used a lot in biostatistics

and medical diagnostics, whereas recall is used more in the machine

learning community. The definition of recall is:

Another metric used is specificity, which measures a model’s ability to

predict a negative outcome:

conf_mat[1,1]/sum(conf_mat[,1])

conf_mat[1,1]/sum(conf_mat[1,])



conf_mat[2,2]/sum(conf_mat[2,])

ROC Curve

You can see that there is a tradeoff between recall and specificity.

Capturing more 1s generally means misclassifying more 0s as 1s. The ideal

classifier would do an excellent job of classifying the 1s, without

misclassifying more 0s as 1s.

The metric that captures this tradeoff is the “Receiver Operating

Characteristics” curve, usually referred to as the ROC curve. The ROC

curve plots recall (sensitivity) on the y-axis against specificity on the x

axis.4 The ROC curve shows the trade-off between recall and specificity as

you change the cutoff to determine how to classify a record. Sensitivity

(recall) is plotted on the y-axis, and you may encounter two forms in which

the x-axis is labeled:

Specificity plotted on the x-axis, with 1 on the left and 0 on the right

Specificity plotted on the x-axis, with 0 on the left and 1 on the right

The curve looks identical whichever way it is done. The process to compute

the ROC curve is:

1. Sort the records by the predicted probability of being a 1, starting with

the most probable and ending with the least probable.

2. Compute the cumulative specificity and recall based on the sorted

records.

Computing the ROC curve in R is straightforward. The following code

computes ROC for the loan data:

idxrecall<- order(-pred)

<- cumsum(true_y[idx]==1)/sum(true_y==1)



specificity <- (sum(true_y==0) -

cumsum(true_y[idx]==0))/sum(true_y==0)roc_df <- data.frame(recall = recall, specificity = specificity)

ggplot(roc_df, aes(x=specificity, y=recall)) +

geom_line(color='blue') +

scale_x_reverse(expand=c(0, 0)) +

scale_y_continuous(expand=c(0, 0)) +

geom_line(data=data.frame(x=(0:100)/100), aes(x=x, y=1-x),

linetype='dotted', color='red')

The result is shown in Figure 5-6. The dotted diagonal line corresponds to a

classifier no better than random chance. An extremely effective classifier

(or, in medical situations, an extremely effective diagnostic test) will have

an ROC that hugs the upper-left corner—it will correctly identify lots of 1s

without misclassifying lots of 0s as 1s. For this model, if we want a

classifier with a specificity of at least 50%, then the recall is about 75%.



Figure 5-6. ROC curve for the loan data

Precision-Recall Curve

In addition to ROC curves, it can be illuminating to examine the precision

recall (PR) curve. PR curves are computed in a similar way except that the

data is ordered from least to most probable and cumulative precision and

recall statistics are computed. PR curves are especially useful in evaluating

data with highly unbalanced outcomes.



AUC

The ROC curve is a valuable graphical tool but, by itself, doesn’t constitute

a single measure for the performance of a classifier. The ROC curve can be

used, however, to produce the area underneath the curve (AUC) metric.

AUC is simply the total area under the ROC curve. The larger the value of

AUC, the more effective the classifier. An AUC of 1 indicates a perfect

classifier: it gets all the 1s correctly classified, and doesn’t misclassify any

0s as 1s.

A completely ineffective classifier—the diagonal line—will have an AUC

of 0.5.

Figure 5-7 shows the area under the ROC curve for the loan model. The

value of AUC can be computed by a numerical integration:

sum(roc_df$recall[-1] * diff(1-roc_df$specificity))

[1] 0.5924072

The model has an AUC of about 0.59, corresponding to a relatively weak

classifier.



Figure 5-7. Area under the ROC curve for the loan data

False Positive Rate Confusion

False positive/negative rates are often confused or conflated with

specificity or sensitivity (even in publications and software!). Sometimes

the false positive rate is defined as the proportion of true negatives that test

positive. In many cases (such as network intrusion detection), the term is

used to refer to the proportion of positive signals that are true negatives.



Lift

Using the AUC as a metric is an improvement over simple accuracy, as it

can assess how well a classifier handles the tradeoff between overall

accuracy and the need to identify the more important 1s. But it does not

completely address the rare-case problem, where you need to lower the

model’s probability cutoff below 0.5 to avoid having all records classified

as 0. In such cases, for a record to be classified as a 1, it might be sufficient

to have a probability of 0.4,0.3, or lower. In effect, we end up

overidentifying 1s, reflecting their greater importance.

Changing this cutoff will improve your chances of catching the 1s (at the

cost of misclassifying more 0s as 1s). But what is the optimum cutoff?

The concept of lift lets you defer answering that question. Instead, you

consider the records in order of their predicted probability of being 1s. Say,

of the top 10% classified as 1s, how much better did the algorithm do,

compared to the benchmark of simply picking blindly? If you can get 0.3%

response in this top decile instead of the 0.1% you get overall picking

randomly, the algorithm is said to have a lift (also called gains) of 3 in the

top decile. A lift chart (gains chart) quantifies this over the range of the

data. It can be produced decile by decile, or continuously over the range of

the data.

To compute a lift chart, you first produce a cumulative gains chart that

shows the recall on the y-axis and the total number of records on the x-axis.

The lift curve is the ratio of the cumulative gains to the diagonal line

corresponding to random selection. Decile gains charts are one of the

oldest techniques in predictive modeling, dating from the days before

internet commerce. They were particularly popular among direct mail

professionals. Direct mail is an expensive method of advertising if applied

indiscriminantly, and advertisers used predictive models (quite simple ones,

in the early days) to identify the potential customers with the likeliest

prospect of payoff.



Uplift

Sometimes the term uplift is used to mean the same thing as lift. An

alternate meaning is used in a more restrictive setting, when an A-B test has

been conducted and the treatment (A or B) is then used as a predictor

variable in a predictive model. The uplift is the improvement in response

predicted for an individual case with treatment A versus treatment B. This

is determined by scoring the individual case first with the predictor set to A,

and then again with the predictor toggled to B. Marketers and political

campaign consultants use this method to determine which of two

messaging treatments should be used with which customers or voters.

A lift curve lets you look at the consequences of setting different

probability cutoffs for classifying records as 1s. It can be an intermediate

step in settling on an appropriate cutoff level. For example, a tax authority

might only have a certain amount of resources that it can spend on tax

audits, and want to spend them on the likeliest tax cheats. With its resource

constraint in mind, the authority would use a lift chart to estimate where to

draw the line between tax returns selected for audit and those left alone.



Key Ideas for Evaluating Classification Models

Accuracy (the percent of predicted classifications that are correct)

is but a first step in evaluating a model.

Other metrics (recall, specificity, precision) focus on more specific

performance characteristics (e.g., recall measures how good a

model is at correctly identifying 1s).

AUC (area under the ROC curve) is a common metric for the

ability of a model to distinguish 1s from 0s.

Similarly, lift measures how effective a model is in identifying the

1s, and it is often calculated decile by decile, starting with the most

probable 1s.

Further Reading

Evaluation and assessment are typically covered in the context of a

particular model (e.g., K-Nearest Neighbors or decision trees); three books

that handle it in its own chapter are:

Data Mining, 3rd ed., by Ian Whitten, Elbe Frank, and Mark Hall

(Morgan Kaufmann, 2011).

Modern Data Science with R by Benjamin Baumer, Daniel Kaplan, and

Nicholas Horton (CRC Press, 2017).

Data Mining for Business Analytics, 3rd ed., by Galit Shmueli, Peter

Bruce, and Nitin Patel (Wiley, 2016, with variants for R, Excel, and

JMP).

An excellent treatment of cross-validation and resampling can be found in:



An Introduction to Statistical Learning by Gareth James, et al.

(Springer, 2013).

Strategies for Imbalanced Data

The previous section dealt with evaluation of classification models using

metrics that go beyond simple accuracy, and are suitable for imbalanced

data—data in which the outcome of interest (purchase on a website,

insurance fraud, etc.) is rare. In this section, we look at additional strategies

that can improve predictive modeling performance with imbalanced data.



Key Terms for Imbalanced Data

Undersample

Use fewer of the prevalent class records in the classification

model.

Synonym

Downsample

Oversample

Use more of the rare class records in the classification model,

bootstrapping if necessary.

Synonym

Upsample

Up weight or down weight

Attach more (or less) weight to the rare (or prevalent) class in the

model.

Data generation

Like bootstrapping, except each new bootstrapped record is

slightly different from its source.

Z-score

The value that results after standardization.

K

The number of neighbors considered in the nearest neighbor

calculation.



Undersampling

If you have enough data, as is the case with the loan data, one solution is to

undersample (or downsample) the prevalent class, so the data to be

modeled is more balanced between 0s and 1s. The basic idea in

undersampling is that the data for the dominant class has many redundant

records. Dealing with a smaller, more balanced data set yields benefits in

model performance, and makes it easier to prepare the data, and to explore

and pilot models.

How much data is enough? It depends on the application, but in general,

having tens of thousands of records for the less dominant class is enough.

The more easily distinguishable the 1s are from the 0s, the less data needed.

The loan data analyzed in “Logistic Regression” was based on a balanced

training set: half of the loans were paid off and the other half were in

default. The predicted values were similar: half of the probabilities were

less than 0.5 and half were greater than 0.5. In the full data set, only about

5% of the loans were in default:

mean(loan_all_data$outcome == 'default')

[1] 0.05024048

What happens if we use the full data set to train the model?

full_model <- glm(outcome ~ payment_inc_ratio + purpose_ +

home_ + emp_len_+ dti + revol_bal +

revol_util,

data=train_set, family='binomial')

pred <- predict(full_model)

mean(pred > 0)

[1] 0.00386009

Only 0.39% of the loans are predicted to be in default, or less than 1/12 of

the expected number. The loans that were paid off overwhelm the loans in



default because the model is trained using all the data equally. Thinking

about it intuitively, the presence of so many nondefaulting loans, coupled

with the inevitable variability in predictor data, means that, even for a

defaulting loan, the model is likely to find some nondefaulting loans that it

is similar to, by chance. When a balanced sample was used, roughly 50% of

the loans were predicted to be in default.

Oversampling and Up/Down Weighting

One criticism of the undersampling method is that it throws away data and

is not using all the information at hand. If you have a relatively small data

set, and the rarer class contains a few hundred or a few thousand records,

then undersampling the dominant class has the risk of throwing out useful

information. In this case, instead of downsampling the dominant case, you

should oversample (upsample) the rarer class by drawing additional rows

with replacement (bootstrapping).

You can achieve a similar effect by weighting the data. Many classification

algorithms take a weight argument that will allow you to up/down weight

the data. For example, apply a weight vector to the loan data using the

weight argument to glm:

wt <- ifelse(loan_all_data$outcome=='default',

full_model <-1/mean(loan_all_data$outcomeglm(outcome ~ payment_inc_ratio== 'default'),+ purpose_ 1)

+
home_ + emp_len_+ dti + revol_bal +

revol_util,

data=loan_all_data, weight=wt,

family='binomial')

pred <- predict(full_model)

mean(pred[1] 0.4344177> 0)

The weights for loans that default are set to where p is the probability of

default. The nondefaulting loans have a weight of 1. The sum of the



weights for the defaulted loans and nondefaulted loans are roughly equal.

The mean of the predicted values is now 43% instead of 0.39%.

Note that weighting provides an alternative to both upsampling the rarer

class and downsampling the dominant class.

Adapting the Loss Function

Many classification and regression algorithms optimize a certain criteria or

loss function. For example, logistic regression attempts to minimize the

deviance. In the literature, some propose to modify the loss function in

order to avoid the problems caused by a rare class. In practice, this is hard

to do: classification algorithms can be complex and difficult to modify.

Weighting is an easy way to change the loss function, discounting errors for

records with low weights in favor of records of higher weights.

Data Generation

A variation of upsampling via bootstrapping (see “Undersampling”) is data

generation by perturbing existing records to create new records. The

intuition behind this idea is that since we only observe a limited set of

instances, the algorithm doesn’t have a rich set of information to build

classification “rules.” By creating new records that are similar but not

identical to existing records, the algorithm has a chance to learn a more

robust set of rules. This notion is similar in spirit to ensemble statistical

models such as boosting and bagging (see Chapter 6).

The idea gained traction with the publication of the SMOTE algorithm,

which stands for “Synthetic Minority Oversampling Technique.” The

SMOTE algorithm finds a record that is similar to the record being

upsampled (see “K-Nearest Neighbors”) and creates a synthetic record that

is a randomly weighted average of the original record and the neighboring

record, where the weight is generated separately for each predictor. The

number of synthetic oversampled records created depends on the

oversampling ratio required to bring the data set into approximate balance,

with respect to outcome classes.



There are several implementations of SMOTE in R. The most

comprehensive package for handling unbalanced data is unbalanced. It

offers a variety of techniques, including a “Racing” algorithm to select the

best method. However, the SMOTE algorithm is simple enough that it can

be implemented directly in R using the knn package.

Cost-Based Classification

In practice, accuracy and AUC are a poor man’s way to choose a

classification rule. Often, an estimated cost can be assigned to false

positives versus false negatives, and it is more appropriate to incorporate

these costs to determine the best cutoff when classifying 1s and 0s. For

example, suppose the expected cost of a default of a new loan is and the

expected return from a paid-off loan is . Then the expected return for

that loan is:

Instead of simply labeling a loan as default or paid off, or determining the

probability of default, it makes more sense to determine if the loan has a

positive expected return. Predicted probability of default is an intermediate

step, and it must be combined with the loan’s total value to determine

expected profit, which is the ultimate planning metric of business. For

example, a smaller value loan might be passed over in favor of a larger one

with a slightly higher predicted default probability.

Exploring the Predictions

A single metric, such as AUC, cannot capture all aspects of the

appropriateness of a model for a situation. Figure 5-8 displays the decision

rules for four different models fit to the loan data using just two predictor

variables: borrower_score and payment_inc_ratio. The models are

linear discriminant analysis (LDA), logistic linear regression, logistic

regression fit using a generalized additive model (GAM) and a tree model

(see “Tree Models”). The region to the upper-left of the lines corresponds



to a predicted default. LDA and logistic linear regression give nearly

identical results in this case. The tree model produces the least regular rule:

in fact, there are situations in which increasing the borrower score shifts the

prediction from “paid-off” to “default”! Finally, the GAM fit of the logistic

regression represents a compromise between the tree models and the linear

models.

Figure 5-8. Comparison of the classification rules for four different methods

It is not easy to visualize the prediction rules in higher dimensions, or in the

case of the GAM and tree model, even generate the regions for such rules.

In any case, exploratory analysis of predicted values is always warranted.



Key Ideas for Imbalanced Data Strategies

Highly imbalanced data (i.e., where the interesting outcomes, the

1s, are rare) are problematic for classification algorithms.

One strategy is to balance the training data via undersampling the

abundant case (or oversampling the rare case).

If using all the 1s still leaves you with too few 1s, you can

bootstrap the rare cases, or use SMOTE to create synthetic data

similar to existing rare cases.

Imbalanced data usually indicates that correctly classifying one

class (the 1s) has higher value, and that value ratio should be built

into the assessment metric.

Further Reading

Tom Fawcett, author of Data Science for Business, has a good article on

imbalanced classes.

For more on SMOTE, see Nitesh V. Chawla, Kevin W. Bowyer,

Lawrence O. Hall, and W. Philip Kegelmeyer, “SMOTE: Synthetic

Minority Over-sampling Technique,” Journal of Artificial Intelligence

Research 16 (2002): 321–357.

Also see the Analytics Vidya Content Team’s “Practical Guide to deal

with Imbalanced Classification Problems in R,” March 28, 2016.

Summary

Classification, the process of predicting which of two (or a small number

of) categories a record belongs to, is a fundamental tool of predictive

analytics. Will a loan default (yes or no)? Will it prepay? Will a web visitor



click on a link? Will she purchase something? Is an insurance claim

fraudulent? Often in classification problems, one class is of primary interest

(e.g., the fraudulent insurance claim) and, in binary classification, this class

is designated as a 1, with the other, more prevalent class being a 0. Often, a

key part of the process is estimating a propensity score, a probability of

belonging to the class of interest. A common scenario is one in which the

class of interest is relatively rare. The chapter concludes with a discussion

of a variety of model assessment metrics that go beyond simple accuracy;

these are important in the rare-class situation, when classifying all records

as 0s can yield high accuracy.

1 This and subsequent sections in this chapter © 2017 Datastats, LLC, Peter

Bruce and Andrew Bruce, used by permission.

2
It is certainly surprising that the first article on statistical classification

was published in a journal devoted to eugenics. Indeed, there is a

disconcerting connection between the early development of statistics and

eugenics.

3 Not all methods provide unbiased estimates of probability. In most cases,

it is sufficient that the method provide a ranking equivalent to the rankings

that would result from an unbiased probability estimate; the cutoff method

is then functionally equivalent.

4The ROC curve was first used during World War II to describe the

performance of radar receiving stations, whose job was to correctly identify

(classify) reflected radar signals, and alert defense forces to incoming

aircraft.



Chapter 6. Statistical Machine Learning

Recent advances in statistics have been devoted to developing more

powerful automated techniques for predictive modeling—both regression

and classification. These methods fall under the umbrella of statistical

machine learning, and are distinguished from classical statistical methods

in that they are data-driven and do not seek to impose linear or other overall

structure on the data. The K-Nearest Neighbors method, for example, is

quite simple: classify a record in accordance with how similar records are

classified. The most successful and widely used techniques are based on

ensemble learning applied to decision trees. The basic idea of ensemble

learning is to use many models to form a prediction as opposed to just a

single model. Decision trees are a flexible and automatic technique to learn

rules about the relationships between predictor variables and outcome

variables. It turns out that the combination of ensemble learning with

decision trees leads to the top-performing off-the-shelf predictive modeling

techniques.

The development of many of the techniques in statistical machine learning

can be traced back to the statisticians Leo Breiman (see Figure 6-1) at the

University of California at Berkeley and Jerry Friedman at Stanford

University. Their work, along with other researchers at Berkeley and

Stanford, started with the development of tree models in 1984. The

subsequent development of ensemble methods of bagging and boosting in

the 1990s established the foundation of statistical machine learning.
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Machine Learning Versus Statistics

In the context of predictive modeling, what is the difference between

machine learning and statistics? There is not a bright line dividing the two

disciplines. Machine learning tends to be more focused on developing

efficient algorithms that scale to large data in order to optimize the

predictive model. Statistics generally pays more attention to the

probabilistic theory and underlying structure of the model. Bagging, and the

random forest (see “Bagging and the Random Forest”), grew up firmly in

the statistics camp. Boosting (see “Boosting”), on the other hand, has been

developed in both disciplines but receives more attention on the machine

learning side of the divide. Regardless of the history, the promise of

boosting ensures that it will thrive as a technique in both statistics and

machine learning.

K-Nearest Neighbors

The idea behind K-Nearest Neighbors (KNN) is very simple.1 For each

record to be classified or predicted:

1. Find K records that have similar features (i.e., similar predictor values).

2. For classification: Find out what the majority class is among those



similar records, and assign that class to the new record.

3. For prediction (also called KNN regression): Find the average among

those similar records, and predict that average for the new record.

Key Terms for K-Nearest Neighbors

Neighbor

A record that has similar predictor values to another record.

Distance metrics

Measures that sum up in a single number how far one record is

from another.

Standardization

Subtract the mean and divide by the standard deviation.

Synonym

Normalization

Z-score

The value that results after standardization.

K

The number of neighbors considered in the nearest neighbor

calculation.

KNN is one of the simpler prediction/classification techniques: there is no

model to be fit (as in regression). This doesn’t mean that using KNN is an

automatic procedure. The prediction results depend on how the features are

scaled, how similarity is measured, and how big K is set. Also, all

predictors must be in numeric form. We will illustrate it with a



classification example.

A Small Example: Predicting Loan Default

Table 6-1 shows a few records of personal loan data from the Lending

Club. Lending Club is a leader in peer-to-peer lending in which pools of

investors make personal loans to individuals. The goal of an analysis would

be to predict the outcome of a new potential loan: paid-off versus default.

Table 6-1. A few records and columns for Lending Club loan data

Outcome Loanamount Income Purpose Yearsemployed Homeownership State

Paid off 10000 79100 debt_consolidation 11 MORTGAGE NV

Paid off 9600 48000 moving 5 MORTGAGE TN

Paid off 18800 120036 debt_consolidation 11 MORTGAGE MD

Default 15250 232000 small_business 9 MORTGAGE CA

Paid off 17050 35000 debt_consolidation 4 RENT MD

Paid off 5500 43000 debt_consolidation 4 RENT KS

Consider a very simple model with just two predictor variables: dti, which

is the ratio of debt payments (excluding mortgage) to income, and

payment_inc_ratio, which is the ratio of the loan payment to income.

Both ratios are multiplied by 100. Using a small set of 200 loans, loan200,

with known binary outcomes (default or no-default, specified in the

predictor outcome200), and with K set to 20, the KNN estimate for a new

loan to be predicted, newloan, with dti=22.5 and payment_inc_ratio=9

can be calculated in R as follows:



library(FNN)knn_pred <- knn(train=loan200, test=newloan, cl=outcome200, k=20)

knn_pred == 'default'

[1] TRUE

The KNN prediction is for the loan to default.

While R has a native knn function, the contributed R package FNN, for Fast

Nearest Neighbor, scales to big data better and provides more flexibility.

Figure 6-2 gives a visual display of this example. The new loan to be

predicted is the square in the middle. The circles (default) and triangles

(paid off) are the training data. The black line shows the boundary of the

nearest 20 points. In this case, 14 defaulted loans lie within the circle as

compared with only 6 paid-off loans. Hence, the predicted outcome of the

loan is default.

Note

While the output of KNN for classification is typically a binary decision,

such as default or paid off in the loan data, KNN routines usually offer the

opportunity to output a probability (propensity) between 0 and 1. The

probability is based on the fraction of one class in the K nearest neighbors.

In the preceding example, this probability of default would have been

estimated at or 0.7. Using a probability score lets you use classification

rules other than simple majority votes (probability of 0.5). This is

especially important in problems with imbalanced classes; see “Strategies

for Imbalanced Data”. For example, if the goal is to identify members of a

rare class, the cutoff would typically be set below 50%. One common

approach is to set the cutoff at the probability of the rare event.



Figure 6-2. KNN prediction of loan default using two variables: debt-to-income

ratio and loan payment-to-income ratio

Distance Metrics

Similarity (nearness) is determined using a distance metric, which is a

function that measures
how far

two records
(x, x,

…
x)

and
(u, u,

…
u)

are from one another. The most popular distance metric between two

vectors is Euclidean distance. To measure the Euclidean distance between

two vectors, subtract one from the other, square the differences, sum them,

and take the square root:

1 2 p 1 2 p

Euclidean distance offers special computational advantages. This is

particularly important for large data sets since KNN involves K× n



pairwise comparisons where n is the number of rows.

Another common distance metric for numeric data is Manhattan distance:

Euclidean distance corresponds to the straight-line distance between two

points (e.g., as the crow flies). Manhattan distance is the distance between

two points traversed in a single direction at a time (e.g., traveling along

rectangular city blocks). For this reason, Manhattan distance is a useful

approximation if similarity is defined as point-to-point travel time.

In measuring distance between two vectors, variables (features) that are

measured with comparatively large scale will dominate the measure. For

example, for the loan data, the distance would be almost solely a function

of the income and loan amount variables, which are measured in tens or

hundreds of thousands. Ratio variables would count for practically nothing

in comparison. We address this problem by standardizing the data; see

“Standardization (Normalization, Z-Scores)”.

Other Distance Metrics

There are numerous other metrics for measuring distance between vectors.

For numeric data, Mahalanobis distance is attractive since it accounts for

the correlation between two variables. This is useful since if two variables

are highly correlated, Mahalanobis will essentially treat these as a single

variable in terms of distance. Euclidean and Manhattan distance do not

account for the correlation, effectively placing greater weight on the

attribute that underlies those features. The downside of using Mahalanobis

distance is increased computational effort and complexity; it is computed

using the covariance matrix; see “Covariance Matrix”.

One Hot Encoder

The loan data in Table 6-1 includes several factor (string) variables. Most

statistical and machine learning models require this type of variable to be

converted to a series of binary dummy variables conveying the same



information, as in Table 6-2. Instead of a single variable denoting the home

occupant status as “owns with a mortage,” “owns with no mortgage,”

“rents,” or “other,” we end up with four binary variables. The first would be

“owns with a mortgage—Y/N,” the second would be “owns with no

mortgage—Y/N,” and so on. This one predictor, home occupant status, thus

yields a vector with one 1 and three 0s, that can be used in statistical and

machine learning algorithms. The phrase one hot encoding comes from

digital circuit terminology, where it describes circuit settings in which only

one bit is allowed to be positive (hot).

Table 6-2. Representing home

ownership factor data as a

numeric dummy variable

MORTGAGE OTHER OWN RENT

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 0 0 1

0 0 0 1

Note

In linear and logistic regression, one hot encoding causes problems with

multicollinearity; see “Multicollinearity”. In such cases, one dummy is

omitted (its value can be inferred from the other values). This is not an

issue with KNN and other methods.

Standardization (Normalization, Z-Scores)



In measurement, we are often not so much interested in “how much” but

“how different from the average.” Standardization, also called

normalization, puts all variables on similar scales by subtracting the mean

and dividing by the standard deviation. In this way, we ensure that a

variable does not overly influence a model simply due to the scale of its

original measurement.

These are commonly refered to as z-scores. Measurements are then stated

in terms of “standard deviations away from the mean.” In this way, a

variable’s impact on a model is not affected by the scale of its original

measurement.

Caution

Normalization in this statistical context is not to be confused with database

normalization, which is the removal of redundant data and the verification

of data dependencies.

For KNN and a few other procedures (e.g., principal components analysis

and clustering), it is essential to consider standardizing the data prior to

applying the procedure. To illustrate this idea, KNN is applied to the loan

data using dti and payment_inc_ratio (see “A Small Example:

Predicting Loan Default”) plus two other variables: revol_bal, the total

revolving credit available to the applicant in dollars, and revol_util, the

percent of the credit being used. The new record to be predicted is shown

here:

newloan

payment_inc_ratio dti revol_bal revol_util

1 2.3932 1 1687 9.4



The magnitude of revol_bal, which is in dollars, is much bigger than the

other variables. The knn function returns the index of the nearest neighbors

as an attribute nn.index, and this can be used to show the top-five closest

rows in loan_df:

loan_df <- model.matrix(~ -1 + payment_inc_ratio + dti + revol_bal

+

payment_inc_ratio

36054 2.22024

33233 5.97874

28989 5.65339

29572 5.00128

20962 9.42600

revol_util, data=loan_data)

knn_pred <- knn(train=loan_df, test=newloan, cl=outcome, k=5)

loan_df[attr(knn_pred,"nn.index"),]

dti revol_bal revol_util

0.79

1.03

5.40

1.84

7.14

1687

1692

1694

1695

1683

6.2

8.47.0

5.1

8.6

The value of revol_bal in these neighbors is very close to its value in the

new record, but the other predictor variables are all over the map and

essentially play no role in determining neighbors.

Compare this to KNN applied to the standardized data using the R function

scale, which computes the z-score for each variable:

loan_std <- scale(loan_df)

knn_pred <- knn(train=loan_std, test=newloan_std, cl=outcome, k=5)

loan_df[attr(knn_pred,"nn.index"),]dti revol_bal revol_util

payment_inc_ratio

2081 2.61091

36054 2.22024

23655 2.34286

41327 2.15987

39555 2.76891

1.03

0.79

1.12

0.69

0.75

1218

1687

523

2115

2129 9.5

8.1

10.7

8.4

9.7

The five nearest neighbors are much more alike in all the variables

providing a more sensible result. Note that the results are displayed on the



original scale, but KNN was applied to the scaled data and the new loan to

be predicted.

Tip

Using the z-score is just one way to rescale variables. Instead of the mean, a

more robust estimate of location could be used, such as the median.

Likewise, a different estimate of scale such as the interquartile range could

be used instead of the standard deviation. Sometimes, variables are

“squashed” into the 0–1 range. It’s also important to realize that scaling

each variable to have unit variance is somewhat arbitrary. This implies that

each variable is thought to have the same importance in predictive power. If

you have subjective knowledge that some variables are more important than

others, then these could be scaled up. For example, with the loan data, it is

reasonable to expect that the payment-to-income ratio is very important.

Note

Normalization (standardization) does not change the distributional shape of

the data; it does not make it normally shaped if it was not already normally

shaped (see “Normal Distribution”).

Choosing K

The choice of K is very important to the performance of KNN. The simplest

choice is to set , known as the 1-nearest neighbor classifier. The

prediction is intuitive: it is based on finding the data record in the training

set most similar to the new record to be predicted. Setting is

rarely the best choice; you’ll almost always obtain superior performance by

using K > 1-nearest neighbors.

Generally speaking, if K is too low, we may be overfitting: including the

noise in the data. Higher values of K provide smoothing that reduces the

risk of overfitting in the training data. On the other hand, if K is too high,

we may oversmooth the data and miss out on KNN’s ability to capture the

local structure in the data, one of its main advantages.



The K that best balances between overfitting and oversmoothing is typically

determined by accuracy metrics and, in particular, accuracy with holdout or

validation data. There is no general rule about the best K—it depends

greatly on the nature of the data. For highly structured data with little noise,

smaller values of K work best. Borrowing a term from the signal processing

community, this type of data is sometimes referred to as having a high

signal-to-noise ratio (SNR). Examples of data with typically high SNR are

handwriting and speech recognition. For noisy data with less structure (data

with a low SNR), such as the loan data, larger values of K are appropriate.

Typically, values of Kfall in the range 1 to 20. Often, an odd number is

chosen to avoid ties.

Bias-Variance Tradeoff

The tension between oversmoothing and overfitting is an instance of the

bias-variance tradeoff, an ubiquitous problem in statistical model fitting.

Variance refers to the modeling error that occurs because of the choice of

training data; that is, if you were to choose a different set of training data,

the resulting model would be different. Bias refers to the modeling error

that occurs because you have not properly identified the underlying real

world scenario; this error would not disappear if you simply added more

training data. When a flexible model is overfit, the variance increases. You

can reduce this by using a simpler model, but the bias may increase due to

the loss of flexibility in modeling the real underlying situation. A general

approach to handling this tradeoff is through cross-validation. See “Cross

Validation” for more details.

KNN as a Feature Engine

KNN gained its popularity due to its simplicity and intuitive nature. In

terms of performance, KNN by itself is usually not competitive with more

sophisticated classification techniques. In practical model fitting, however,

KNN can be used to add “local knowledge” in a staged process with other

classification techniques.



1. KNN is run on the data, and for each record, a classification (or quasi

probability of a class) is derived.

2. That result is added as a new feature to the record, and another

classification method is then run on the data. The original predictor

variables are thus used twice.

At first you might wonder whether this process, since it uses some

predictors twice, causes a problem with multicollinearity (see

“Multicollinearity”). This is not an issue, since the information being

incorporated into the second-stage model is highly local, derived only from

a few nearby records, and is therefore additional information, and not

redundant.

Note

You can think of this staged use of KNN as a form of ensemble learning, in

which multiple predictive modeling methods are used in conjunction with

one another. It can also be considered as a form of feature engineering

where the aim is to derive features (predictor variables) that have predictive

power. Often this involves some manual review of the data; KNN gives a

fairly automatic way to do this.

For example, consider the King County housing data. In pricing a home for

sale, a realtor will base the price on similar homes recently sold, known as

“comps.” In essence, realtors are doing a manual version of KNN: by

looking at the sale prices of similar homes, they can estimate what a home

will sell for. We can create a new feature for a statistical model to mimic

the real estate professional by applying KNN to recent sales. The predicted

value is the sales price and the existing predictor variables could include

location, total square feet, type of structure, lot size, and number of

bedrooms and bathrooms. The new predictor variable (feature) that we add

via KNN is the KNN predictor for each record (analogous to the realtors’

comps). Since we are predicting a numerical value, the average of the K



Nearest Neighbors is used instead of a majority vote (known as KNN

regression).

Similarly, for the loan data, we can create features that represent different

aspects of the loan process. For example, the following would build a

feature that represents a borrower’s creditworthiness:

borrow_df <- model.matrix(~ -1 + dti + revol_bal + revol_util +

open_acc +

delinq_2yrs_zero + pub_rec_zero,

data=loan_data)borrow_knn <- knn(borrow_df, test=borrow_df, cl=loan_data[,'outcome'], prob=TRUE, k=10)

prob <- attr(borrow_knn, "prob")

borrow_feature <- ifelse(borrow_knn=='default', prob, 1-prob)

summary(borrow_feature)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.4000 0.5000 0.5012 0.6000 1.0000

The result is a feature that predicts the likelihood a borrower will default

based on his credit history.



Key Ideas for K-Nearest Neighbors

K-Nearest Neighbors (KNN) classifies a record by assigning it to

the class that similar records belong to.

Similarity (distance) is determined by Euclidian distance or other

related metrics.

The number of nearest neighbors to compare a record to, K, is

determined by how well the algorithm performs on training data,

using different values for K.

Typically, the predictor variables are standardized so that variables

of large scale do not dominate the distance metric.

KNN is often used as a first stage in predictive modeling, and the

predicted value is added back into the data as a predictor for

second-stage (non-KNN) modeling.

Tree Models

Tree models, also called Classification and Regression Trees (CART),

decision trees, or just trees, are an effective and popular classification (and

regression) method initially developed by Leo Breiman and others in 1984.

Tree models, and their more powerful descendents random forests and

boosting (see “Bagging and the Random Forest” and “Boosting”), form the

basis for the most widely used and powerful predictive modeling tools in

data science for both regression and classification.

2

Key Terms for Trees

Recursive partitioning

Repeatedly dividing and subdividing the data with the goal of



making the outcomes in each final subdivision as homogeneous as

possible.

Split value

A predictor value that divides the records into those where that

predictor is less than the split value, and those where it is more.

Node

In the decision tree, or in the set of corresponding branching rules,

a node is the graphical or rule representation of a split value.

Leaf

The end of a set of if-then rules, or branches of a tree—the rules

that bring you to that leaf provide one of the classification rules for

any record in a tree.

Loss

The number of misclassifications at a stage in the splitting process;

the more losses, the more impurity.

Impurity

The extent to which a mix of classes is found in a subpartition of

the data (the more mixed, the more impure).

Synonym

Heterogeneity

Antonym

Homogeneity, purity

Pruning

The process of taking a fully grown tree and progressively cutting



its branches back, to reduce overfitting.

A tree model is a set of “if-then-else” rules that are easy to understand and

to implement. In contrast to regression and logistic regression, trees have

the ability to discover hidden patterns corresponding to complex

interactions in the data. However, unlike KNN or naive Bayes, simple tree

models can be expressed in terms of predictor relationships that are easily

interpretable.

Decision Trees in Operations Research

The term decision trees has a different (and older) meaning in decision

science and operations research, where it refers to a human decision

analysis process. In this meaning, decision points, possible outcomes, and

their estimated probabilities are laid out in a branching diagram, and the

decision path with the maximum expected value is chosen.

A Simple Example

The two main packages to fit tree models in R are rpart and tree. Using

the rpart package, a model is fit to a sample of 3,000 records of the loan

data using the variables payment_inc_ratio and borrower_score (see

“K-Nearest Neighbors” for a description of the data).

library(rpart)

loan_tree <- rpart(outcome ~ borrower_score + payment_inc_ratio,

data=loan_data, control =

rpart.control(cp=.005))

plot(loan_tree, uniform=TRUE, margin=.05)

text(loan_tree)

The resulting tree is shown in Figure 6-3. These classification rules are

determined by traversing through a hierarchical tree, starting at the root

until a leaf is reached.



Figure 6-3. The rules for a simple tree model fit to the loan data

Typically, the tree is plotted upside-down, so the root is at the top and the

leaves are at the bottom. For example, if we get a loan with

borrower_score of 0.6 and a payment_inc_ratio of 8.0, we end up at the

leftmost leaf and predict the loan will be paid off.

A nicely printed version of the tree is also easily produced:

loan_tree

n= 3000

node), split, n, loss, yval, (yprob)

* denotes terminal node

1) root 3000 1467 paid off (0.5110000 0.4890000)

2) borrower_score>=0.525 1283 474 paid off (0.6305534

0.3694466)

4) payment_inc_ratio< 8.772305 845 249 paid off (0.7053254

0.2946746) *

5) payment_inc_ratio>=8.772305 438 213 default (0.4863014

0.5136986)



10) borrower_score>=0.625 149 60 paid off (0.5973154

0.4026846) *

11) borrower_score< 0.625 289 124 default (0.4290657

0.5709343) *

3) borrower_score< 0.525 1717 724 default (0.4216657

0.5783343)

6) payment_inc_ratio< 9.73236 1082 517 default (0.4778189

0.5221811)

12) borrower_score>=0.375 784 384 paid off (0.5102041

0.4897959) *

13) borrower_score< 0.375 298 117 default (0.3926174

0.6073826) *

7) payment_inc_ratio>=9.73236 635 207 default (0.3259843

0.6740157) *

The depth of the tree is shown by the indent. Each node corresponds to a

provisional classification determined by the prevalent outcome in that

partition. The “loss” is the number of misclassifications yielded by the

provisional classification in a partition. For example, in node 2, there were

474 misclassification out of a total of 1,467 total records. The values in the

parentheses correspond to the proportion of records that are paid off and

default, respectively. For example, in node 13, which predicts default, over

60 percent of the records are loans that are in default.

The Recursive Partitioning Algorithm

The algorithm to construct a decision tree, called recursive partitioning , is

straightforward and intuitive. The data is repeatedly partitioned using

predictor values that do the best job of separating the data into relatively

homogeneous partitions. Figure 6-4 shows a picture of the partitions

created for the tree in Figure 6-3. The first rule is borrower_score >=

0.525 and is depicted by rule 1 in the plot. The second rule is

payment_inc_ratio < 9.732 and divides the righthand region in two.



Figure 6-4. The rules for a simple tree model fit to the loan data

Suppose we have a response variable Y and a set
of
P predictor variables X

j

j1. For each predictor variable X,

for . For a partition A of records, recursive

partitioning will find the best way to partition A into two subpartitions:

j ja. For each value s of
X:

jj ji. Split the records
in
A with X values <

remaining records where X ≥ s
as

another partition.

j

js as one partition, and the

ii. Measure the homogeneity of classes within each subpartition of A.

b.
Select the value

of
s

that
produces maximum within-partition

homogeneity of class.



2. Select
the

variable X and
the

split values
that

produces maximum

within-partition homogeneity of class.

j j

Now comes the recursive part:

1. Initialize A with the entire data set.

2. Apply the partitioning algorithm to split A into two subpartitions, A and

A.

12

3. Repeat step 2 on subpartitions A and A.1 2

4. The algorithm terminates when no further partition can be made that

sufficiently improves the homogeneity of the partitions.

The end result is a partitioning of the data, as in Figure 6-4 except in P

dimensions, with each partition predicting an outcome of 0 or 1 depending

on the majority vote of the reponse in that partition.

Note

In addition to a binary 0/1 prediction, tree models can produce a probability

estimate based on the number of 0s and 1s in the partition. The estimate is

simply the sum of 0s or 1s in the partition divided by the number of

observations in the partition.

canThe estimated then be converted to a binary

decision; for example, set the estimate to 1 if Prob(Y= 1) > 0.5.

Measuring Homogeneity or Impurity

Tree models recursively create partitions (sets of records), A, that predict an

outcome of Y= 0 or Y= 1. You can see from the preceding algorithm that

we need a way to measure homogeneity, also called class purity, within a



partition. Or, equivalently, we need to measure the impurity of a partition.

The accuracy of the predictions is the proportion p of misclassified records

within that partition, which ranges from 0 (perfect) to 0.5 (purely random

guessing).

It turns out that accuracy is not a good measure for impurity. Instead, two

common measures for impurity are the Gini impurity and entropy or

information. While these (and other) impurity measures apply to

classification problems with more than two classes, we focus on the binary

case. The Gini impurity for a set of records A is:

The entropy measure is given by:

Figure 6-5 shows that Gini impurity (rescaled) and entropy measures are

similar, with entropy giving higher impurity scores for moderate and high

accuracy rates.



Figure 6-5. Gini impurity and entropy measures

Gini Coefficient

Gini impurity is not to be confused with the Gini coefficient. They represent

similar concepts, but the Gini coefficient is limited to the binary

classification problem and is related to the AUC metric (see “AUC”).

The impurity metric is used in the splitting algorithm described earlier. For

each proposed partition of the data, impurity is measured for each of the

partitions that result from the split. A weighted average is then calculated,

and whichever partition (at each stage) yields the lowest weighted average

is selected.

Stopping the Tree from Growing



As the tree grows bigger, the splitting rules become more detailed, and the

tree gradually shifts from identifying “big” rules that identify real and

reliable relationships in the data to “tiny” rules that reflect only noise. A

fully grown tree results in completely pure leaves and, hence, 100%

accuracy in classifying the data that it is trained on. This accuracy is, of

course, illusory—we have overfit (see Bias-Variance Tradeoff) the data,

fitting the noise in the training data, not the signal that we want to identify

in new data.

Pruning

A simple and intuitive method of reducing tree size is to prune back the

terminal and smaller branches of the tree, leaving a smaller tree. How far

should the pruning proceed? A common technique is to prune the tree back

to the point where the error on holdout data is minimized. When we

combine predictions from multiple trees (see “Bagging and the Random

Forest”), however, we will need a way to stop tree growth. Pruning plays a

role in the process of cross-validation to determine how far to grow trees

that are used in ensemble methods.

We need some way to determine when to stop growing a tree at a stage that

will generalize to new data. There are two common ways to stop splitting:

Avoid splitting a partition if a resulting subpartition is too small, or if a

terminal leaf is too small. In rpart, these constraints are controlled

separately by the parameters minsplit and minbucket, respectively,

with defaults of 20 and 7.

Don’t split a partition if the new partition does not “significantly” reduce

the impurity. In rpart, this is controlled by the complexity parameter

cp, which is a measure of how complex a tree is—the more complex, the

greater the value of cp. In practice, cp is used to limit tree growth by

attaching a penalty to additional complexity (splits) in a tree.



The first method involves arbitrary rules, and can be usful for exploratory

work, but we can’t easily determine optimum values (i.e., values that

maximize predictive accuracy with new data). With the complexity

parameter, cp, we can estimate what size tree will perform best with new

data.

If cp is too small, then the tree will overfit the data, fitting noise and not

signal. On the other hand, if cp is too large, then the tree will be too small

and have little predictive power. The default in rpart is 0.01, although for

larger data sets, you are likely to find this is too large. In the previous

example, cp was set to 0.005 since the default led to a tree with a single

split. In exploratory analysis, it is sufficient to simply try a few values.

Determining the optimum cp is an instance of the bias-variance tradeoff

(see Bias-Variance Tradeoff). The most common way to estimate a good

value of cp is via cross-validation (see “Cross-Validation”):

1. Partition the data into training and validation (holdout) sets.

2. Grow the tree with the training data.

3. Prune it successively, step by step, recording cp (using the training data)

at each step.

4. Note the cp that corresponds to the minimum error (loss) on the

validation data.

5. Repartition the data into training and validation, and repeat the growing,

pruning, and cp recording process.

6. Do this again and again, and average the cps that reflect minimum error

for each tree.

7. Go back to the original data, or future data, and grow a tree, stopping at

this optimum cp value.



In rpart, you can use the argument cptable to produce a table of the CP

values and their associated cross-validation error (xerror in R), from

which you can determine the CP value that has the lowest cross-validation

error.

Predicting a Continuous Value

Predicting a continuous value (also termed regression) with a tree follows

the same logic and procedure, except that impurity is measured by squared

deviations from the mean (squared errors) in each subpartition, and

predictive performance is judged by the square root of the mean squared

error (RMSE) (see “Assessing the Model”) in each partition.

How Trees Are Used

One of the big obstacles faced by predictive modelers in organizations is

the perceived “black box” nature of the methods they use, which gives rise

to opposition from other elements of the organization. In this regard, the

tree model has two appealing aspects.

Tree models provide a visual tool for exploring the data, to gain an idea

of what variables are important and how they relate to one another.

Trees can capture nonlinear relationships among predictor variables.

Tree models provide a set of rules that can be effectively communicated

to nonspecialists, either for implementation or to “sell” a data mining

project.

When it comes to prediction, however, harnassing the results from multiple

trees is typically more powerful than just using a single tree. In particular,

the random forest and boosted tree algorithms almost always provide

superior predictive accuracy and performance (see “Bagging and the

Random Forest” and “Boosting”), but the aforementioned advantages of a

single tree are lost.



Key Ideas

Decision trees produce a set of rules to classify or predict an

outcome.

The rules correspond to successive partitioning of the data into

subpartitions.

Each partition, or split, references a specific value of a predictor

variable and divides the data into records where that predictor value

is above or below that split value.

At each stage, the tree algorithm chooses the split that minimizes

the outcome impurity within each subpartition.

When no further splits can be made, the tree is fully grown and

each terminal node, or leaf, has records of a single class; new cases

following that rule (split) path would be assigned that class.

A fully grown tree overfits the data and must be pruned back so

that it captures signal and not noise.

Multiple-tree algorithms like random forests and boosted trees

yield better predictive performance, but lose the rule-based

communicative power of single trees.

Further Reading

Analytics Vidhya Content Team, “A Complete Tutorial on Tree Based

Modeling from Scratch (in R & Python)”, April 12, 2016.

Terry M. Therneau, Elizabeth J. Atkinson, and the Mayo Foundation,

“An Introduction to Recursive Partitioning Using the RPART

Routines”, June 29, 2015.



Bagging and the Random Forest

In 1907, the statistician Sir Francis Galton was visiting a county fair in

England, at which a contest was being held to guess the dressed weight of

an ox that was on exhibit. There were 800 guesses, and, while the

individual guesses varied widely, both the mean and the median came out

within 1% of the ox’s true weight. James Suroweicki has explored this

phenomenon in his book The Wisdom of Crowds (Doubleday, 2004). This

principle applies to predictive models, as well: averaging (or taking

majority votes) of multiple models—an ensemble of models—turns out to

be more accurate than just selecting one model.



Key Terms for Bagging and the Random Forest

Ensemble

Forming a prediction by using a collection of models.

Synonym

Model averaging

Bagging

A general technique to form a collection of models by

bootstrapping the data.

Synonym

Bootstrap aggregation

Random forest

A type of bagged estimate based on decision tree models.

Synonym

Bagged decision trees

Variable importance

A measure of the importance of a predictor variable in the

performance of the model.

The ensemble approach has been applied to and across many different

modeling methods, most publicly in the Netflix Contest, in which Netflix

offered a $1 million prize to any contestant who came up with a model that

produced a 10% improvement in predicting the rating that a Netflix

customer would award a movie. The simple version of ensembles is as

follows:



1. Develop a predictive model and record the predictions for a given data

set.

2. Repeat for multiple models, on the same data.

3. For each record to be predicted, take an average (or a weighted average,

or a majority vote) of the predictions.

Ensemble methods have been applied most systematically and effectively

to decision trees. Ensemble tree models are so powerful that they provide a

way to build good predictive models with relatively little effort.

Going beyond the simple ensemble algorithm, there are two main variants

of ensemble models: bagging and boosting. In the case of ensemble tree

models, these are refered to as random forest models and boosted tree

models. This section focuses on bagging; boosting is covered in

“Boosting”.

Bagging

Bagging, which stands for “bootstrap aggregating,” was introduced by Leo

Breiman in 1994. Suppose we have a response Yand P predictor variables

with n records.

Bagging is like the basic algorithm for ensembles, except that, instead of

fitting the various models to the same data, each new model is fit to a

bootstrap resample. Here is the algorithm presented more formally:

1. Initialize M, the number of models to be fit, and n, the number of

records to choose (n < N). Set the iteration .

2. Take a bootstrap resample (i.e., with replacement) of n records from the

training data to form a subsample (the bag).and

3. Train a model using and to create a set of decision rules .



.4. Increment the model counter If m <= M, go to step

1.

In the case where , the bagged

estimate is given by:

predicts the probability

Random Forest

The random forest is based on applying bagging to decision trees with one

important extension: in addition to sampling the records, the algorithm also

samples the variables. In traditional decision trees, to determine how to

create a subpartition of a partition A, the algorithm makes the choice of

variable and split point by minimizing a criterion such as Gini impurity (see

“Measuring Homogeneity or Impurity”). With random forests, at each stage

of the algorithm, the choice of variable is limited to a random subset of

variables. Compared to the basic tree algorithm (see “The Recursive

Partitioning Algorithm”), the random forest algorithm adds two more steps:

the bagging discussed earlier (see “Bagging and the Random Forest”), and

the bootstrap sampling of variables at each split:

3

1. Take a bootstrap (with replacement) subsample from the records.

2. For the first split, sample p < P variables at random without

replacement.

3. For each of the sampled variables , apply

the splitting algorithm:

a. For each value of :



i. Split the records
in

partition A with X < s
as one

partition,j(k) j(k)

and the remaining records where as another

partition.

ii. Measure the homogeneity of classes within each subpartition of A.

that produces maximum within-partition

homogeneity of class.

b. Select the value of

4. Select the variable that produces

maximum within-partition homogeneity of class.

and the split value

5. Proceed to the next split and repeat the previous steps, starting with step

2.

6. Continue with additional splits following the same procedure until the

tree is grown.

7. Go back to step 1, take another bootstrap subsample, and start the

process over again.

How many variables to sample at each step? A rule of thumb is to choose

where P is the number of predictor variables. The package

randomForest implements the random forest in R. The following applies

this package to the loan data (see “K-Nearest Neighbors” for a description

of the data).

> library(randomForest)

> rf <- randomForest(outcome ~ borrower_score + payment_inc_ratio,

data=loan3000)Call:

randomForest(formula = outcome ~ borrower_score +

payment_inc_ratio,

data = loan3000)



Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 1

OOB estimate of error rate: 38.53%

Confusion matrix:

paid off default class.error

paid off 1089 425 0.2807133

default 731 755 0.4919246

By default, 500 trees are trained. Since there are only two variables in the

predictor set, the algorithm randomly selects the variable on which to split

at each stage (i.e., a bootstrap subsample of size 1).

The out-of-bag (OOB) estimate of error is the error rate for the trained

models, applied to the data left out of the training set for that tree. Using the

output from the model, the OOB error can be plotted versus the number of

trees in the random forest:

error_df = data.frame(error_rate = rf$err.rate[,'OOB'],

num_trees = 1:rf$ntree)

ggplot(error_df, aes(x=num_trees, y=error_rate)) +

geom_line()

The result is shown in Figure 6-6. The error rate rapidly decreases from

over .44 before stabilizing around .385. The predicted values can be

obtained from the predict function and plotted as follows:

pred <- predict(loan_lda)

rf_df <- cbind(loan3000, pred_default=pred[,'default']>.5)ggplot(data=rf_df, aes(x=borrower_score, y=payment_inc_ratio,

color=pred_default, shape=pred_default)) +

geom_point(alpha=.6, size=2) +

scale_shape_manual( values=c( 46, 4))



Figure 6-6. The improvement in accuracy of the random forest with the addition of

more trees

The plot, shown in Figure 6-7, is quite revealing about the nature of the

random forest.



Figure 6-7. The predicted outcomes from the random forest applied to the loan

default data

The random forest method is a “black box” method. It produces more

accurate predictions than a simple tree, but the simple tree’s intuitive

decision rules are lost. The predictions are also somewhat noisy: note that

some borrowers with a very high score, indicating high creditworthiness,

still end up with a prediction of default. This is a result of some unusual

records in the data and demonstrates the danger of overfitting by the

random forest (see Bias-Variance Tradeoff).

Variable Importance

The power of the random forest algorithm shows itself when you build

predictive models for data with many features and records. It has the ability



to automatically determine which predictors are important and discover

complex relationships between predictors corresponding to interaction

terms (see “Interactions and Main Effects”). For example, fit a model to the

loan default data with all columns included:

> rf_all <- randomForest(outcome ~ ., data=loan_data,

importance=TRUE)

> rf_all

Call:

randomForest(formula = outcome ~ ., data = loan_data, importance

= TRUE)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 34.38%

Confusion matrix:

paid off default class.error

paid off 15078 8058 0.3482884

default 7849 15287 0.3392548

The argument importance=TRUE requests that the randomForest store

additional information about the importance of different variables. The

function varImpPlot will plot the relative performance of the variables:

varImpPlot(rf_all, type=1)

varImpPlot(rf_all, type=2)

The result is shown in Figure 6-8.



Figure 6-8. The importance of variables for the full model fit to the loan data

There are two ways to measure variable importance:



By the decrease in accuracy of the model if the values of a variable are

randomly permuted (type=1). Randomly permuting the values has the

effect of removing all predictive power for that variable. The accuracy is

computed from the out-of-bag data (so this measure is effectively a

cross-validated estimate).

By the mean decrease in the Gini impurity score (see “Measuring

Homogeneity or Impurity”) for all of the nodes that were split on a

variable (type=2). This measures how much improvement to the purity

of the nodes that variable contributes. This measure is based on the

training set, and therefore less reliable than a measure calculated on out

of-bag data.

The top and bottom panels of Figure 6-8 show variable importance

according to the decrease in accuracy and in Gini impurity, respectively.

The variables in both panels are ranked by the decrease in accuracy. The

variable importance scores produced by these two measures are quite

different.

Since the accuracy decrease is a more reliable metric, why should we use

the Gini impurity decrease measure? By default, randomForest only

computes this Gini impurity: Gini impurity is a byproduct of the algorithm,

whereas model accuracy by variable requires extra computations (randomly

permuting the data and predicting this data). In cases where computational

complexity is important, such as in a production setting where thousands of

models are being fit, it may not be worth the extra computational effort. In

addition, the Gini decrease sheds light on which variables the random forest

is using to make its splitting rules (recall that this information, readily

visible in a simple tree, is effectively lost in a random forest). Examining

the difference between Gini decrease and model accuracy variable

importance may suggest ways to improve the model.

Hyperparameters



The random forest, as with many statistical machine learning algorithms,

can be considered a black-box algorithm with knobs to adjust how the box

works. These knobs are called hyperparameters, which are parameters that

you need to set before fitting a model; they are not optimized as part of the

training process. While traditional statistical models require choices (e.g.,

the choice of predictors to use in a regression model), the hyperparameters

for random forest are more critical, especially to avoid overfitting. In

particular, the two most important hyperparemters for the random forest

are:

nodesize

The minimum size for terminal nodes (leaves in the tree). The default is

1 for classification and 5 for regression.

maxnodes

The maximum number of nodes in each decision tree. By default, there

is no limit and the largest tree will be fit subject to the constraints of

nodesize.

It may be tempting to ignore these parameters and simply go with the

default values. However, using the default may lead to overfitting when

you apply the random forest to noisy data. When you increase nodesize or

set maxnodes, the algorithm will fit smaller trees and is less likely to create

spurious predictive rules. Cross-validation (see “Cross-Validation”) can be

used to test the effects of setting different values for hyperparameters.



Key Ideas for Bagging and the Random Forest

Ensemble models improve model accuracy by combining the

results from many models.

Bagging is a particular type of ensemble model based on fitting

many models to bootstrapped samples of the data and averaging the

models.

Random forest is a special type of bagging applied to decision

trees. In addition to resampling the data, the random forest

algorithm samples the predictor variables when splitting the trees.

A useful output from the random forest is a measure of variable

importance that ranks the predictors in terms of their contribution

to model accuracy.

The random forest has a set of hyperparameters that should be

tuned using cross-validation to avoid overfitting.

Boosting

Ensemble models have become a standard tool for predictive modeling.

Boosting is a general technique to create an ensemble of models. It was

developed around the same time as bagging (see “Bagging and the Random

Forest”). Like bagging, boosting is most commonly used with decision

trees. Despite their similarities, boosting takes a very different approach—

one that comes with many more bells and whistles. As a result, while

bagging can be done with relatively little tuning, boosting requires much

greater care in its application. If these two methods were cars, bagging

could be considered a Honda Accord (reliable and steady), whereas

boosting could be considered a Porsche (powerful but requires more care).



In linear regression models, the residuals are often examined to see if the fit

can be improved (see “Partial Residual Plots and Nonlinearity”). Boosting

takes this concept much further and fits a series of models with each

successive model fit to minimize the error of the previous models. Several

variants of the algorithm are commonly used: Adaboost, gradient boosting,

and stochastic gradient boosting. The latter, stochastic gradient boosting, is

the most general and widely used. Indeed, with the right choice of

parameters, the algorithm can emulate the random forest.

Key Terms for Boosting

Ensemble

Forming a prediction by using a collection of models.

Synonym

Model averaging

Boosting

A general technique to fit a sequence of models by giving more

weight to the records with large residuals for each successive

round.

Adaboost

An early version of boosting based on reweighting the data based

on the residuals.

Gradient boosting

A more general form of boosting that is cast in terms of

minimizing a cost function.

Stochastic gradient boosting

The most general algorithm for boosting that incorporates



resampling of records and columns in each round.

Regularization

A technique to avoid overfitting by adding a penalty term to the

cost function on the number of parameters in the model.

Hyperparameters

Parameters that need to be set before fitting the algorithm.

The Boosting Algorithm

The basic idea behind the various boosting algorithms is essentially the

same. The easiest to understand is Adaboost, which proceeds as follows:

1. Initialize M, the maximum number of models to be fit, and set the

iteration counter . Initialize the ensemblefor . Initialize the observation weights

.model

2. Train a model using using the observation weights

defined

by summing the weights for the misclassified observations.

that minimizes the weighted error

3. Add the model to the ensemble:.

4. Update the weights so that the weights are

where

increased for the observations that were misclassfied. The size of the

increase depends on with larger values of leading to bigger



weights.

5. Increment the model counter , go to

step 1.

. If

The boosted estimate is given by:

By increasing the weights for the observations that were misclassified, the

algorithm forces the models to train more heavily on the data for which it

performed poorly. The factor ensures that models with lower error

have a bigger weight.

Gradient boosting is similar to Adaboost but casts the problem as an

optimization of a cost function. Instead of adjusting weights, gradient

boosting fits models to a pseudo-residual, which has the effect of training

more heavily on the larger residuals. In the spirit of the random forest,

stochastic gradient boosting adds randomness to the algorithm by sampling

observations and predictor variables at each stage.

XGBoost

The most widely used public domain software for boosting is XGBoost, an

implementation of stochastic gradient boosting originally developed by

Tianqi Chen and Carlos Guestrin at the University of Washington. A

computationally efficient implementation with many options, it is available

as a package for most major data science software languages. In R,

XGBoost is available as the package xgboost.

The function xgboost has many parameters that can, and should, be

adjusted (see “Hyperparameters and Cross-Validation”). Two very

important parameters are subsample, which controls the fraction of

observations that should be sampled at each iteration, and eta, a shrinkage



infactor applied to the boosting algorithm (see “The Boosting

Algorithm”). Using subsample makes boosting act like the random forest

except that the sampling is done without replacement. The shrinkage

parameter eta is helpful to prevent overfitting by reducing the change in

the weights (a smaller change in the weights means the algorithm is less

likely to overfit to the training set). The following applies xgboost to the

loan data with just two predictor variables:

library(xgboost)

predictors <- data.matrix(loan3000[, c('borrower_score',

'payment_inc_ratio')])

label <- as.numeric(loan3000[,'outcome'])-1

xgb <- xgboost(data=predictors,objective = "binary:logistic",label=label,

params=list(subsample=.63, eta=0.1), nrounds=100)

Note that xgboost does not support the formula syntax, so the predictors

need to be converted to a data.matrix and the response needs to be

converted to 0/1 variables. The objective argument tells xgboost what

type of problem this is; based on this, xgboost will choose a metric to

optimize.

The predicted values can be obtained from the predict function and, since

there are only two variables, plotted versus the predictors:

pred <- predict(xgb, newdata=predictors)

xgb_df <- cbind(loan3000, pred_default=pred>.5, prob_default=pred)

ggplot(data=xgb_df, aes(x=borrower_score, y=payment_inc_ratio,

geom_point(alpha=.6,color=pred_default,size=2) shape=pred_default)) +

The result is shown in Figure 6-9. Qualitatively, this is similar to the

predictions from the random forest; see Figure 6-7. The predictions are

somewhat noisy in that some borrowers with a very high borrower score



still end up with a prediction of default.

Figure 6-9. The predicted outcomes from XGBoost applied to the loan default data

Regularization: Avoiding Overfitting

Blind application of xgboost can lead to unstable models as a result of

overfitting to the training data. The problem with overfitting is twofold:

The accuracy of the model on new data not in the training set will be

degraded.

The predictions from the model are highly variable, leading to unstable

results.



Any modeling technique is potentially prone to overfitting. For example, if

too many variables are included in a regression equation, the model may

end up with spurious predictions. However, for most statistical techniques,

overfitting can be avoided by a judicious selection of predictor variables.

Even the random forest generally produces a reasonable model without

tuning the parameters. This, however, is not the case for xgboost. Fit

xgboost to the loan data for a training set with all of the variables included

in the model:

> predictors <- data.matrix(loan_data[,-which(names(loan_data)

%in%

'outcome')])

> label <- as.numeric(loan_data$outcome)-1

> test_idx <- sample(nrow(loan_data), 10000)

> xgb_default <- xgboost(data=predictors[-test_idx,],label=label[-test_idx],objective = "binary:logistic",

nrounds=250)

> pred_default <- predict(xgb_default, predictors[test_idx,])> error_default <- abs(label[test_idx] - pred_default) > 0.5

> xgb_default$evaluation_log[250,]

iter train_error

1: 250 0.145622

> mean(error_default)

[1] 0.3715

The test set consists of 10,000 randomly sampled records from the full data,

and the training set consists of the remaining records. Boosting leads to an

error rate of only 14.6% for the training set. The test set, however, has a

much higher error rate of 36.2%. This is a result of overfitting: while

boosting can explain the variability in the training set very well, the

prediction rules do not apply to new data.

Boosting provides several parameters to avoid overfitting, including the

parameters eta and subsample (see “XGBoost”). Another approach is

regularization, a technique that modifies the cost function in order to



penalize the complexity of the model. Decision trees are fit by minimizing

cost criteria such as Gini’s impurity score (see “Measuring Homogeneity or

Impurity”). In xgboost, it is possible to modify the cost function by adding

a term that measures the complexity of the model.

There are two parameters in xgboost to regularize the model: alpha and

lambda, which correspond to Manhattan distance and squared Euclidean

distance, respectively (see “Distance Metrics”). Increasing these parameters

will penalize more complex models and reduce the size of the trees that are

fit. For example, see what happens if we set lambda to 1,000:

> xgb_penalty <- xgboost(data=predictors[-test_idx,],label=label[-test_idx],params=list(eta=.1, subsample=.63,

lambda=1000),

objective = "binary:logistic",

nrounds=250)

> pred_penalty <- predict(xgb_penalty, predictors[test_idx,])> error_penalty <- abs(label[test_idx] - pred_penalty) > 0.5

> xgb_penalty$evaluation_log[250,]

iter train_error

1: 250 0.332405

> mean(error_penalty)

[1] 0.3483

Now the training error is only slightly lower than the error on the test set.

The predict method offers a convenient argument, ntreelimit, that

forces only the first i trees to be used in the prediction. This lets us directly

compare the in-sample versus out-of-sample error rates as more models are

included:

> error_default <- rep(0, 250)

> error_penalty <- rep(0, 250)

> for(i in 1:250){

pred_def <- predict(xgb_default, predictors[test_idx,],

ntreelimit=i)



error_default[i] <- mean(abs(label[test_idx] - pred_def) >= 0.5)

pred_pen <- predict(xgb_penalty, predictors[test_idx,],ntreelimit = i)

error_penalty[i] <- mean(abs(label[test_idx] - pred_pen) >= 0.5)

}

The output from the model returns the error for the training set in the

component xgb_default$evaluation_log. By combining this with the

out-of-sample errors, we can plot the errors versus the number of iterations:

> errors <- rbind(xgb_default$evaluation_log,

xgb_penalty$evaluation_log,

data.frame(iter=1:250,

train_error=error_default),

data.frame(iter=1:250, train_error=error_penalty))

> errors$type <- rep(c('default train', 'penalty train',

'default test', 'penalty test'), rep(250,

4))

> ggplot(errors, aes(x=iter, y=train_error, group=type)) +

geom_line(aes(linetype=type, color=type))

The result, displayed in Figure 6-10, shows how the default model steadily

improves the accuracy for the training set but actually gets worse for the

test set. The penalized model does not exhibit this behavior.



Figure 6-10. The error rate of the default XGBoost versus a penalized version of

XGBoost



Ridge Regression and the Lasso

Adding a penalty on the complexity of a model to help avoid

overfitting dates back to the 1970s. Least squares regression

minimizes the residual sum of squares (RSS); see “Least Squares”.

Ridge regression minimizes the sum of squared residuals plus a

penalty on the number and size of the coefficients:

determinesThe value of how much the coefficients are penalized;

larger values produce models that are less likely to overfit the data.

The Lasso is similar, except that it uses Manhattan distance instead of

Euclidean distance as a penalty term:

The xgboost parameters lambda and alpha are acting in a similar

mannger.

Hyperparameters and Cross-Validation

xgboost has a daunting array of hyperparameters; see “XGBoost

Hyperparameters” for a discussion. As seen in “Regularization: Avoiding

Overfitting”, the specific choice can dramatically change the model fit.

Given a huge combination of hyperparameters to choose from, how should

we be guided in our choice? A standard solution to this problem is to use

cross-validation; see “Cross-Validation”. Cross-validation randomly splits

up the data into K different groups, also called folds. For each fold, a model

is trained on the data not in the fold and then evaluated on the data in the



fold. This yields a measure of accuracy of the model on out-of-sample data.

The best set of hyperparameters is the one given by the model with the

lowest overall error as computed by averaging the errors from each of the

folds.

To illustrate the technique, we apply it to parameter selection for xgboost.

In this example, we explore two parameters: the shrinkage parameter eta

(see “XGBoost”) and the maximum depth of trees max_depth. The

parameter max_depth is the maximum depth of a leaf node to the root of

the tree with a default value of 6. This gives us another way to control

overfitting: deep trees tend to be more complex and may overfit the data.

First we set up the folds and parameter list:

> N <- nrow(loan_data)

> fold_number <- sample(1:5, N, replace = TRUE)

> params <- data.frame(eta = rep(c(.1, .5, .9), 3),

max_depth = rep(c(3, 6, 12), rep(3,3)))

Now we apply the preceding algorithm to compute the error for each model

and each fold using five folds:

> error <- matrix(0, nrow=9, ncol=5)

> for(i in 1:nrow(params)){> for(k in 1:5){

> fold_idx <- (1:N)[fold_number == k]

> xgb <- xgboost(data=predictors[-fold_idx,], label=label[-fold_idx],

params = list(eta = params[i, 'eta'],

max_depth = params[i,

'max_depth']),

objective = "binary:logistic", nrounds=100,

verbose=0)

> pred <- predict(xgb, predictors[fold_idx,])> error[i, k] <- mean(abs(label[fold_idx] - pred) >= 0.5)

> }

> }



Since we are fitting 45 total models, this can take a while. The errors are

stored as a matrix with the models along the rows and folds along the

columns. Using the function rowMeans, we can compare the error rate for

the different parameter sets:

> avg_error <- 100 * rowMeans(error)

cbind(params, avg_error)

eta max_depth avg_error

>

1 0.1 3 35.41

2 0.5 3 35.84

34 0.90.1 36 36.4835.375 0.5 6 37.336 0.9 6 39.4178 0.10.5 1212 36.70

38.85

9 0.9 12 40.19

Cross-validation suggests that using shallower trees with a smaller value of

eta yields more accurate results. Since these models are also more stable,

the best parameters to use are eta=0.1 and max_depth=3 (or possibly

max_depth=6).

XGBoost Hyperparameters

The hyperparameters for xgboost are primarily used to balance

overfitting with the accuracy and computational complexity. For a

complete discussion of the parameters, refer to the xgboost

documentation.

eta

The shrinkage factor between 0 and 1 applied to in the boosting

algorithm. The default is 0.3, but for noisy data, smaller values are

recommended (e.g., 0.1).



nrounds

The number of boosting rounds. If eta is set to a small value, it is

important to increase the number of rounds since the algorithm

learns more slowly. As long as some parameters are included to

prevent overfitting, having more rounds doesn’t hurt.

max_depth

The maximum depth of the tree (the default is 6). In contrast to the

random forest, which fits very deep trees, boosting usually fits

shallow trees. This has the advantage of avoiding spurious

complex interactions in the model that can arise from noisy data.

subsample and colsample_bytree

Fraction of the records to sample without replacement and the

fraction of predictors to sample for use in fitting the trees. These

parameters, which are similar to those in random forests, help

avoid overfitting.

lambda and alpha

The regularization parameters to help control overfitting (see

“Regularization: Avoiding Overfitting”).



Key Ideas for Boosting

Boosting is a class of ensemble models based on fitting a sequence

of models, with more weight given to records with large errors in

successive rounds.

Stochastic gradient boosting is the most general type of boosting

and offers the best performance. The most common form of

stochastic gradient boosting uses tree models.

XGBoost is a popular and computationally efficient software

package for stochastic gradient boosting; it is available in all

common languages used in data science.

Boosting is prone to overfitting the data, and the hyperparameters

need to be tuned to avoid this.

Regularization is one way to avoid overfitting by including a

penalty term on the number of parameters (e.g., tree size) in a

model.

Cross-validation is especially important for boosting due to the

large number of hyperparameters that need to be set.

Summary

This chapter describes two classification and prediction methods that

“learn” flexibly and locally from data, rather than starting with a structural

model (e.g., a linear regression) that is fit to the entire data set. K-Nearest

Neighbors is a simple process that simply looks around at similar records

and assigns their majority class (or average value) to the record being

predicted. Trying various cutoff (split) values of predictor variables, tree

models iteratively divide the data into sections and subsections that are



increasingly homogeneous with respect to class. The most effective split

values form a path, and also a “rule,” to a classification or prediction. Tree

models are a very powerful and popular predictive tool, often

outperforming other methods. They have given rise to various ensemble

methods (random forests, boosting, bagging) that sharpen the predictive

power of trees.

1 This and subsequent sections in this chapter © 2017 Datastats, LLC, Peter

Bruce and Andrew Bruce, used by permission.

2 The term CART is a registered trademark of Salford Systems related to

their specific implementation of tree models.

3The
term random forest is a trademark of Leo Breiman and Adele Cutler

and licensed to Salford Systems. There is no standard nontrademark name,

and the term random forest is as synonymous with the algorithm as

Kleenex is with facial tissues.



Chapter 7. Unsupervised Learning

The term unsupervised learning refers to statistical methods that extract

meaning from data without training a model on labeled data (data where an

outcome of interest is known). In Chapters 4 and 5, the goal is to build a

model (set of rules) to predict a response from a set of predictor variables.

Unsupervised learning also constructs a model of the data, but does not

distinguish between a response variable and predictor variables.

Unsupervised learning can have different possible goals. In some cases, it

can be used to create a predictive rule in the absence of a labeled response.

Clustering methods can be used to identify meaningful groups of data. For

example, using the web clicks and demographic data of a user on a website,

we may be able to group together different types of users. The website

could then be personalized to these different types.

In other cases, the goal may be to reduce the dimension of the data to a

more manageable set of variables. This reduced set could then be used as

input into a predictive model, such as regression or classification. For

example, we may have thousands of sensors to monitor an industrial

process. By reducing the data to a smaller set of features, we may be able to

build a more powerful and interpretable model to predict process failure

than by including data streams from thousands of sensors.

Finally, unsupervised learning can be viewed as an extension of the

exploratory data analysis (see Chapter 1) to situations where you are

confronted with a large number of variables and records. The aim is to gain

insight into a set of data and how the different variables relate to each other.

Unsupervised techniques give ways to sift through and analyze these

variables and discover relationships.



Unsupervised Learning and Prediction

Unsupervised learning can play an important role for prediction, both

for regression and classification problems. In some cases, we want to

predict a category in the absence of any labeled data. For example, we

might want to predict the type of vegetation in an area from a set of

satellite sensory data. Since we don’t have a response variable to train

a model, clustering gives us a way to identify common patterns and

categorize the regions.

Clustering is an especially important tool for the “cold-start problem.”

In these types of problems, such as launching a new marketing

campaign or identifying potential new types of fraud or spam, we

initially may not have any response to train a model. Over time, as

data is collected, we can learn more about the system and build a

traditional predictive model. But clustering helps us start the learning

process more quickly by identifying population segments.

Unsupervised learning is also important as a building block for

regression and classification techniques. With big data, if a small

subpopulation is not well represented in the overall population, the

trained model may not perform well for that subpopulation. With

clustering, it is possible to identify and label subpopulations. Separate

models can then be fit to the different subpopulations. Alternatively,

the subpopulation can be represented with its own feature, forcing the

overall model to explicitly consider subpopulation identity as a

predictor.

Principal Components Analysis

Often, variables will vary together (covary), and some of the variation in

one is actually duplicated by variation in another. Principal components

analysis (PCA) is a technique to discover the way in which numeric

1



1
variables covary.

Key Terms for Principal Components Analysis

Principal component

A linear combination of the predictor variables.

Loadings

The weights that transform the predictors into the components.

Synonym

Weights

Screeplot

A plot of the variances of the components, showing the relative

importance of the components.

The idea in PCA is to combine multiple numeric predictor variables into a

smaller set of variables, which are weighted linear combinations of the

original set. The smaller set of variables, the principal components,

“explains” most of the variability of the full set of variables, reducing the

dimension of the data. The weights used to form the principal components

reveal the relative contributions of the original variables to the new

principal components.

PCA was first proposed by Karl Pearson. In what was perhaps the first

paper on unsupervised learning, Pearson recognized that in many problems

there is variability in the predictor variables, so he developed PCA as a

technique to model this variability. PCA can be viewed as the unsupervised

version of linear discriminant analysis; see“Discriminant Analysis”.

A Simple Example



and (For two variables, , there are two principal components

or 2):

areThe weights known as the component loadings. These

transform the original variables into the principal components. The first

principal component, , is the linear combination that best explains the

total variation. The second principal component, , explains the

remaining variation (it is also the linear combination that is the worst fit).

Note

It is also common to compute principal components on deviations from the

means of the predictor variables, rather than on the values themselves.

You can compute principal components in R using the princomp function.

The following performs a PCA on the stock price returns for Chevron

(CVX) and ExxonMobil (XOM):

oil_px <- sp500_px[, c('CVX', 'XOM')]

pca <- princomp(oil_px)

pca$loadings

Loadings:

Comp.1 Comp.2

CVX -0.747 0.665

XOM -0.665 -0.747

The weights for CVX and XOM for the first principal component are –

0.747 and –0.665 and for the second principal component they are 0.665

and –0.747. How to interpret this? The first principal component is

essentially an average of CVX and XOM, reflecting the correlation



between the two energy companies. The second principal component

measures when the stock prices of CVX and XOM diverge.

It is instructive to plot the principal components with the data:

loadings <- pca$loadings

ggplot(data=oil_px, aes(x=CVX, y=XOM)) +

geom_point(alpha=.3) +

stat_ellipse(type='norm', level=.99) +

geom_abline(intercept = 0, slope = loadings[2,1]/loadings[1,1])+

geom_abline(intercept = 0, slope = loadings[2,2]/loadings[1,2])

The result is shown in Figure 7-1.



Figure 7-1. The principal components for the stock returns for Chevron and

ExxonMobil

The solid dashed lines show the two principal components: the first one is

along the long axis of the ellipse and the second one is along the short axis.

You can see that a majority of the variability in the two stock returns is

explained by the first principal component. This makes sense since energy

stock prices tend to move as a group.

Note



The weights for the first principal component are both negative, but

reversing the sign of all the weights does not change the principal

component. For example, using weights of 0.747 and 0.665 for the first

principal component is equivalent to the negative weights, just as an infinite

line defined by the origin and 1,1 is the same as one defined by the origin

and –1, –1.

Computing the Principal Components

Going from two variables to more variables is straightforward. For the first

component, simply include the additional predictor variables in the linear

combination, assigning weights that optimize the collection of the

covariation from all the predictor variables into this first principal

component (covariance is the statistical term; see “Covariance Matrix”).

Calculation of principal components is a classic statistical method, relying

on either the correlation matrix of the data or the covariance matrix, and it

executes rapidly, not relying on iteration. As noted earlier, it works only

with numeric variables, not categorical ones. The full process can be

described as follows:

1. In creating the first principal component, PCA arrives at the linear

combination of predictor variables that maximizes the percent of total

variance explained.

2. This linear combination then becomes the first “new” predictor, Z.1

3. PCA repeats this process, using the same variables, with different

weights to create a second new predictor, Z. The weighting is done

such that Z and Z are uncorrelated.

21 2

4. The process continues until you have as many new variables, or

components, Z as original variables X.
i i

5. Choose to retain as many components as are needed to account for most

of the variance.



6. The result so far is a set of weights for each component. The final step is

to convert the original data into new principal component scores by

applying the weights to the original values. These new scores can then

be used as the reduced set of predictor variables.

Interpreting Principal Components

The nature of the principal components often reveals information about the

structure of the data. There are a couple of standard visualization displays

to help you glean insight about the principal components. One such method

is a Screeplot to visualize the relative importance of principal components

(the name derives from the resemblance of the plot to a scree slope). The

following is an example for a few top companies in the S&P 500:

syms <- c('AAPL', 'MSFT', 'CSCO', 'INTC', 'CVX', 'XOM',

'SLB', 'COP', 'JPM', 'WFC', 'USB', 'AXP', 'WMT', 'TGT', 'HD',

'COST')

top_sp <- sp500_px[row.names(sp500_px)>='2005-01-01', syms]

sp_pca <- princomp(top_sp)

screeplot(sp_pca)

As seen in Figure 7-2, the variance of the first principal component is quite

large (as is often the case), but the other top principal components are

significant.



Figure 7-2. A screeplot for a PCA of top stocks from the S&P 500

It can be especially revealing to plot the weights of the top principal

components. One way to do this is to use the gather function from the

tidyr package in conjunction with ggplot:

library(tidyr)loadings <- sp_pca$loadings[,1:5]loadings$Symbol <- row.names(loadings)



loadings <- gather(loadings, "Component", "Weight", -Symbol)

ggplot(loadings, aes(x=Symbol, y=Weight)) +

geom_bar(stat='identity') +

facet_grid(Component ~ ., scales='free_y')

The loadings for the top five components are shown in Figure 7-3. The

loadings for the first principal component have the same sign: this is typical

for data in which all the columns share a common factor (in this case, the

overall stock market trend). The second component captures the price

changes of energy stocks as compared to the other stocks. The third

component is primarily a contrast in the movements of Apple and CostCo.

The fourth component contrasts the movements of Schlumberger to the

other energy stocks. Finally, the fifth component is mostly dominated by

financial companies.



Figure 7-3. The loadings for the top five principal components of stock price returns

How Many Components to Choose?

If your goal is to reduce the dimension of the data, you must decide how

many principal components to select. The most common approach is to use

an ad hoc rule to select the components that explain “most” of the variance.

You can do this visually through the screeplot; for example, in Figure 7-2,

it would be natural to restrict the analysis to the top five components.



Alternatively, you could select the top components such that the cumulative

variance exceeds a threshold, such as 80%. Also, you can inspect the

loadings to determine if the component has an intuitive interpretation.

Cross-validation provides a more formal method to select the number of

significant components (see “Cross-Validation” for more).

Key Ideas for Principal Components

Principal components are linear combinations of the predictor

variables (numeric data only).

They are calculated so as to minimize correlation between

components, reducing redundancy.

A limited number of components will typically explain most of the

variance in the outcome variable.

The limited set of principal components can then be used in place

of the (more numerous) original predictors, reducing

dimensionality.

Further Reading

For a detailed look at the use of cross-validation in principal components,

see Rasmus Bro, K. Kjeldahl, A.K. Smilde, and Henk A. L. Kiers, “Cross

Validation of Component Models: A Critical Look at Current Methods”,

Analytical and Bioanalytical Chemistry 390, no. 5 (2008).

K-Means Clustering

Clustering is a technique to divide data into different groups, where the

records in each group are similar to one another. A goal of clustering is to

identify significant and meaningful groups of data. The groups can be used

directly, analyzed in more depth, or passed as a feature or an outcome to a



predictive regression or classification model. K-means is the first clustering

method to be developed; it is still widely used, owing its popularity to the

relative simplicity of the algorithm and its ability to scale to large data sets.

Key Terms for K-Means Clustering

Cluster

A group of records that are similar.

Cluster mean

The vector of variable means for the records in a cluster.

K

The number of clusters.

K-means divides the data into K clusters by minimizing the sum of the

squared distances of each record to the mean of its assigned cluster. The is

referred to as the within-cluster sum of squares or within-cluster SS. K

means does not ensure the clusters will have the same size, but finds the

clusters that are the best separated.

Normalization

It is typical to normalize (standardize) continuous variables by subtracting

the mean and dividing by the standard deviation. Otherwise, variables with

large scale will dominate the clustering process (see “Standardization

(Normalization, Z-Scores)”).

A Simple Example

Start by considering a data set with n records and just two variables,. Suppose we want to split the data into clusters. This meansand

assigning each record to a cluster k. Given an assignment of



isrecords to cluster k, the center of the cluster the mean of the

points in the cluster:

In clustering records with multiple variables (the typical case), the term

cluster mean refers not to a single number, but to the vector of means of the

variables.

Cluster Mean

The sum of squares within a cluster is given by:

K-means finds the assignment of records that minimizes within-cluster sum

.of squares across all four clusters



K-means clustering can be used to gain insight into how the price

movements of stocks tend to cluster. Note that stock returns are reported in

a fashion that is, in effect, standardized, so we do not need to normalize the

data. In R, K-means clustering can be performed using the kmeans function.

For example, the following finds four clusters based on two variables: the

stock returns for ExxonMobil (XOM) and Chevron (CVX):

df <- sp500_px[row.names(sp500_px)>='2011-01-01', c('XOM', 'CVX')]

km <- kmeans(df, centers=4)

The cluster assignment for each record is returned as the cluster

component:

> df$cluster

> head(df)

2011-01-03

2011-01-04

2011-01-05

2011-01-06

2011-01-07

2011-01-10

The first six records are assigned to either cluster 1 or cluster 2. The means

<- factor(km$cluster)

XOM

0.73680496

0.16866845

0.02663055

0.24855834

0.33732892

0.00000000

CVX cluster

0.2406809 2

-0.5845157 1

0.4469854 2

-0.9197513 1

0.1805111 2

-0.4641675 1

of the clusters are also returned:



> centers <- data.frame(cluster=factor(1:4), km$centers)

> centers

cluster XOM CVX

1 -0.3284864 -0.5669135

2 0.2410159 0.3342130

3 -1.1439800 -1.7502975

4 0.9568628 1.3708892

1

2

3

4

Clusters 1 and 3 represent “down” markets, while clusters 2 and 4 represent

“up markets.” In this example, with just two variables, it is straightforward

to visualize the clusters and their means:

ggplot(data=df, aes(x=XOM, y=CVX, color=cluster, shape=cluster)) +

geom_point(alpha=.3) +

geom_point(data=centers, aes(x=XOM, y=CVX), size=3, stroke=2)

The resulting plot, given by Figure 7-4, shows the cluster assignments and

the cluster means.



Figure 7-4. The clusters of K-means applied to stock price data for ExxonMobil and

Chevron (the two cluster centers in the dense area are hard to distinguish)

K-Means Algorithm

In general, K-means can be applied to a data set with p variables

. While the exact solution to K-means is computationally

very difficult, heuristic algorithms provide an efficient way to compute a

locally optimal solution.

The algorithm starts with a user-specified K and an initial set of cluster

means, then iterates the following steps:

1. Assign each record to the nearest cluster mean as measured by squared

distance.



2. Compute the new cluster means based on the assignment of records.

The algorithm converges when the assignment of records to clusters does

not change.

For the first iteration, you need to specify an initial set of cluster means.

Usually you do this by randomly assigning each record to one of the K

clusters, then finding the means of those clusters.

Since this algorithm isn’t guaranteed to find the best possible solution, it is

recommended to run the algorithm several times using different random

samples to initialize the algorithm. When more than one set of iterations is

used, the K-means result is given by the iteration that has the lowest within

cluster sum of squares.

The nstart parameter to the R function kmeans allows you to specify the

number of random starts to try. For example, the following code runs K

means to find 5 clusters using 10 different starting cluster means:

syms <- c('AAPL', 'MSFT', 'CSCO', 'INTC', 'CVX', 'XOM', 'SLB',

'COP',

'JPM', 'WFC', 'USB', 'AXP', 'WMT', 'TGT', 'HD', 'COST')

df <- sp500_px[row.names(sp500_px)>='2011-01-01', syms]

km <- kmeans(df, centers=5, nstart=10)

The function automatically returns the best solution out of the 10 different

starting points. You can use the argument iter.max to set the maximum

number of iterations the algorithm is allowed for each random start.

Interpreting the Clusters

An important part of cluster analysis can involve the interpretation of the

clusters. The two most important outputs from kmeans are the sizes of the

clusters and the cluster means. For the example in the previous subsection,

the sizes of resulting clusters are given by this R command:



km$size

[1] 186 106 285 288 266

The cluster sizes are relatively balanced. Imbalanced clusters can result

from distant outliers, or groups of records very distinct from the rest of the

data—both may warrant further inspection.

You can plot the centers of the clusters using the gather function in

conjunction with ggplot:

centers <- as.data.frame(t(centers))

names(centers) <- paste("Cluster", 1:5)

centers$Symbol <- row.names(centers)

centers <- gather(centers, "Cluster", "Mean", -Symbol)

centers$Color = centers$Mean > 0

ggplot(centers, aes(x=Symbol, y=Mean, fill=Color)) +

geom_bar(stat='identity', position = "identity", width=.75) +

facet_grid(Cluster ~ ., scales='free_y')

The resulting plot is shown in Figure 7-5 and reveals the nature of each

cluster. For example, clusters 1 and 2 correspond to days on which the

market is down and up, respectively. Clusters 3 and 5 are characterized by

up-market days for consumer stocks and down-market days for energy

stocks, respectively. Finally, cluster 4 captures the days in which energy

stocks were up and consumer stocks were down.



Figure 7-5. The means of the variables in each cluster (“cluster means”)



Cluster Analysis versus PCA

The plot of cluster means is similar in spirit to looking at the loadings for

principal component analysis (PCA); see “Interpreting Principal

Components”. A major distinction is that unlike with PCA, the sign of the

cluster means is meaningful. PCA identifies principal directions of

variation, whereas cluster analysis finds groups of records located near one

another.

Selecting the Number of Clusters

The K-means algorithm requires that you specify the number of clusters K.

Sometimes the number of clusters is driven by the application. For

example, a company managing a sales force might want to cluster

customers into “personas” to focus and guide sales calls. In such a case,

managerial considerations would dictate the number of desired customer

segments—for example, two might not yield useful differentiation of

customers, while eight might be too many to manage.

In the absence of a cluster number dictated by practical or managerial

considerations, a statistical approach could be used. There is no single

standard method to find the “best” number of clusters.

A common approach, called the elbow method, is to identify when the set

of clusters explains “most” of the variance in the data. Adding new clusters

beyond this set contributes relatively little incremental contribution in the

variance explained. The elbow is the point where the cumulative variance

explained flattens out after rising steeply, hence the name of the method.

Figure 7-6 shows the cumulative percent of variance explained for the

default data for the number of clusters ranging from 2 to 15. Where is the

elbow in this example? There is no obvious candidate, since the

incremental increase in variance explained drops gradually. This is fairly

typical in data that does not have well-defined clusters. This is perhaps a

drawback of the elbow method, but it does reveal the nature of the data.



Figure 7-6. The elbow method applied to the stock data

In R, the kmeans function doesn’t provide a single command for applying

the elbow method, but it can be readily applied from the output of kmeans

as shown here:

pct_var <- data.frame(pct_var = 0,

num_clusters=2:14)

totalss <- kmeans(df, centers=14, nstart=50, iter.max = 100)$totss

for(i in 2:14){

pct_var[i-1, 'pct_var'] <- kmeans(df, centers=i, nstart=50,

iter.max = 100)

$betweenss/totalss

}

In evaluating how many clusters to retain, perhaps the most important test



is this: how likely are the clusters to be replicated on new data? Are the

clusters interpretable, and do they relate to a general characteristic of the

data, or do they just reflect a specific instance? You can assess this, in part,

using cross-validation; see “Cross-Validation”.

In general, there is no single rule that will reliably guide how many clusters

to produce.

Note

There are several more formal ways to determine the number of clusters

based on statistical or information theory. For example, Robert Tibshirani,

Guenther Walther, and Trevor Hastie

(http://www.stanford.edu/~hastie/Papers/gap.pdf) propose a “gap” statistic

based on statistical theory to identify the elbow. For most applications, a

theoretical approach is probably not necessary, or even appropriate.

Key Ideas for K-Means Clustering

The number of desired clusters, K, is chosen by the user.

The algorithm develops clusters by iteratively assigning records to

the nearest cluster mean until cluster assignments do not change.

Practical considerations usually dominate the choice of K; there is

no statistically determined optimal number of clusters.

Hierarchical Clustering

Hierarchical clustering is an alternative to K-means that can yield very

different clusters. Hierarchical clustering is more flexible than K-means and

more easily accommodates non-numerical variables. It is more sensitive in

discovering outlying or aberrant groups or records. Hierarchical clustering

also lends itself to an intuitive graphical display, leading to easier



interpretation of the clusters.

Key Terms for Hierarchical Clustering

Dendrogram

A visual representation of the records and the hierarchy of clusters

to which they belong.

Distance

A measure of how close one record is to another.

Dissimilarity

A measure of how close one cluster is to another.

Hierarchical clustering’s flexibility comes with a cost, and hierarchical

clustering does not scale well to large data sets with millions of records. For

even modest-sized data with just tens of thousands of records, hierarchical

clustering can require intensive computing resources. Indeed, most of the

applications of hierarchical clustering are focused on relatively small data

sets.

A Simple Example

Hierarchical clustering works on a data set with n records and p variables

and is based on two basic building blocks:

A distance metric to measure the distance beween two records i and

j.

A dissimilarity metric to measure the difference between two

clusters A and B based on the distances between the members of



each cluster.

For applications involving numeric data, the most importance choice is the

dissimilarity metric. Hierarchical clustering starts by setting each record as

its own cluster and iterates to combine the least dissimilar clusters.

In R, the hclust function can be used to perform hierarchical clustering.

One big difference with hclust versus kmeans is that it operates on the

pairwise distances rather than the data itself. You can compute these

using the dist function. For example, the following applies hierarchical

clustering to the stock returns for a set of companies:

syms1 <- c('GOOGL','XOM', 'SLB','AMZN','COP','AAPL','JPM','MSFT','WFC','CSCO','USB','INTC','AXP', 'CVX',

'WMT', 'TGT', 'HD', 'COST')

df <- t(sp500_px[row.names(sp500_px)>='2011-01-01', syms1])

d <- dist(df)

hcl <- hclust(d)

Clustering algorithms will cluster the records (rows) of a data frame. Since

we want to cluster the companies, we need to transpose the data frame and

put the stocks along the rows and the dates along the columns.

The Dendrogram

Hierarchical clustering lends itself to a natural graphical display as a tree,

referred to as a dendrogram. The name comes from the Greek words

dendro (tree) and gramma (drawing). In R, you can easily produce this

using the plot command:

plot(hcl)

The result is shown in Figure 7-7. The leaves of the tree correspond to the



records. The length of the branch in the tree indicates the degree of

dissimilarity between corresponding clusters. The returns for Google and

Amazon are quite dissimilar to the returns for the other stocks. The other

stocks fall into natural groups: energy stocks, financial stocks, and

consumer stocks are all separated into their own subtrees.

Figure 7-7. A dendogram of stocks



In contrast to K-means, it is not necessary to prespecify the number of

clusters. To extract a specific number of clusters, you can use the cutree

function:

cutree(hcl, k=4)

GOOGL AMZN AAPL MSFT CSCO INTC CVX XOM SLB COP JPM

WFC

3

1 2 3 3 3 3 4 4 4 4 3

USB AXP WMT TGT HD COST

3 3 3 3 3 3

The number of clusters to extract is set to 4, and you can see that Google

and Amazon each belong to their own cluster. The oil stocks (XOM, CVS,

SLB, COP) all belong to another cluster. The remaining stocks are in the

fourth cluster.

The Agglomerative Algorithm

The main algorithm for hierarchical clustering is the agglomerative

algorithm, which iteratively merges similar clusters. The agglomerative

algorithm begins with each record constituting its own single-record

cluster, then builds up larger and larger clusters. The first step is to

calculate distances between all pairs of records.

For each pair of records ,and

we measure the distance between the two records, , using a distance

metric (see “Distance Metrics”). For example, we can use Euclidian

distance:

We now turn to inter-cluster distance. Consider two clusters A and B, each

with a distinctive set of records, and



. We can measure the dissimilarity between

the clusters by using the distances between the members of

A and the members of B.

One measure of dissimilarity is the complete-linkage method, which is the

maximum distance across all pairs of records between A and B:

This defines the dissimilarity as the biggest difference between all pairs.

The main steps of the agglomerative algorithm are:

1. Create an initial set of clusters with each cluster consisting of a single

record for all records in the data.

2. Compute the dissimilarity ) between all pairs of clusters

.

3. Merge the two clusters that are least dissimilar as measuredand

).by

4. If we have more than one cluster remaining, return to step 2. Otherwise,

we are done.

Measures of Dissimilarity

There are four common measures of dissimilarity: complete linkage, single

linkage, average linkage, and minimum variance. These (plus other

measures) are all supported by most hierarchical clustering software,

including hclust. The complete linkage method defined earlier tends to

produce clusters with members that are similar. The single linkage method



is the minimum distance between the records in two clusters:

This is a “greedy” method and produces clusters that can contain quite

disparate elements. The average linkage method is the average of all

distance pairs and represents a compromise between the single and

complete linkage methods. Finally, the minimum variance method, also

referred to as Ward’s method, is similar to K-means since it minimizes the

within-cluster sum of squares (see “K-Means Clustering”).

Figure 7-8 applies hierarchical clustering using the four measures to the

ExxonMobil and Chevron stock returns. For each measure, four clusters are

retained.

Figure 7-8. A comparison of measures of dissimilarity applied to stock data



The results are strikingly different: the single linkage measure assigns

almost all of the points to a single cluster. Except for the minimum variance

method (Ward.D), all measures end up with at least one cluster with just a

few outlying points. The minimum variance method is most similar to the

K-means cluster; compare with Figure 7-4.

Key Ideas for Hierarchical Clustering

Start with every record in its own cluster.

Progressively, clusters are joined to nearby clusters until all records

belong to a single cluster (the agglomerative algorithm).

The agglomeration history is retained and plotted, and the user

(without specifying the number of clusters beforehand) can

visualize the number and structure of clusters at different stages.

Inter-cluster distances are computed in different ways, all relying

on the set of all inter-record distances.

Model-Based Clustering

Clustering methods such as hierarchical clustering and K-means are based

on heuristics and rely primarily on finding clusters whose members are

close to one another, as measured directly with the data (no probability

model involved). In the past 20 years, significant effort has been devoted to

developing model-based clustering methods. Adrian Raftery and other

researchers at the University of Washington made critical contributions to

model-based clustering, including both theory and software. The techniques

are grounded in statistical theory and provide more rigorous ways to

determine the nature and number of clusters. They could be used, for

example, in cases where there might be one group of records that are



similar to one another but not necessarily close to one another (e.g., tech

stocks with high variance of returns), and another group of records that is

similar, and also close (e.g., utility stocks with low variance).

Multivariate Normal Distribution

The most widely used model-based clustering methods rest on the

multivariate normal distribution. The multivariate normal distribution is a

generalization of the normal distribution to set of p variables

. The distribution is defined by a set of means

. The covariance

matrix is a measure of how the variables correlate with each other (see

and a covariance matrix

“Covariance Matrix” for details on the covariance). The covariance matrix

for allconsists of p variances and covariances

pairs of variables . With the variables put along the rows and

duplicated along the columns, the matrix looks like this:



Since a covariance matrix is symmetric, and , there are only

covariance terms. In total, the covariance

matrix has parameters. The distribution is denoted by:

This is a symbolic way of saying that the variables are all normally

distributed, and the overall distribution is fully described by the vector of

variable means and the covariance matrix.

Figure 7-9 shows the probability contours for a multivariate normal

distribution for two variables X and Y (the 0.5 probability contour, for

example, contains 50% of the distribution).

and

is:

Since the covariance is positive, X and Y are positively correlated.

The means are and the covariance matrix



Figure 7-9. Probability contours for a two-dimensional normal distribution

Mixtures of Normals

The key idea behind model-based clustering is that each record is assumed

to be distributed as one of K multivariate-normal distributions, where K is

the number of clusters. Each distribution has a different mean and

covariance matrix . For example, if you have two variables, X and Y,



then each row

K distributions

.

R has a very rich package for model-based clustering called mclust,

originally developed by Chris Fraley and Adrian Raftery. With this

package, we can apply model-based clustering to the stock return data we

previously analyzed using K-means and hierarchical clustering:

is modeled as having been sampled from one of

> library(mclust)

> df <- sp500_px[row.names(sp500_px)>='2011-01-01', c('XOM',

'CVX')]

> mcl <- Mclust(df)

> summary(mcl)Mclust VEE (ellipsoidal, equal shape and orientation) model with 2

components:

log.likelihood n df BIC ICL

-2255.134 1131 9 -4573.546 -5076.856

Clustering table:

1 2

963 168

If you execute this code, you will notice that the computation takes

significiantly longer than other procedures. Extracting the cluster

assignments using the predict function, we can visualize the clusters:

cluster <- factor(predict(mcl)$classification)

ggplot(data=df, aes(x=XOM, y=CVX, color=cluster, shape=cluster)) +

geom_point(alpha=.8)

The resulting plot is shown in Figure 7-10. There are two clusters: one

cluster in the middle of the data, and a second cluster in the outer edge of



the data. This is very different from the clusters obtained using K-means

(Figure 7-4) and hierarchical clustering (Figure 7-8), which find clusters

that are compact.

Figure 7-10. Two clusters are obtained for stock return data using mclust

You can extract the parameters to the normal distributions using the

summary function:

> summary(mcl,

[,1]

XOM 0.05783847

CVX 0.07363239

> summary(mcl,

parameters=TRUE)$mean

[,2]

-0.04374944

-0.21175715

parameters=TRUE)$variance



, , 1

XOM CVX

XOM 0.3002049 0.3060989

CVX 0.3060989 0.5496727

, , 2

XOM CVX

XOM 1.046318 1.066860

CVX 1.066860 1.915799

The distributions have similar means and correlations, but the second

distribution has much larger variances and covariances.

The clusters from mclust may seem surprising, but in fact, they illustrate

the statistical nature of the method. The goal of model-based clustering is to

find the best-fitting set of multivariate normal distributions. The stock data

appears to have a normal-looking shape: see the contours of Figure 7-9. In

fact, though, stock returns have a longer-tailed distribution than a normal

distribution. To handle this, mclust fits a distribution to the bulk of the

data, but then fits a second distribution with a bigger variance.

Selecting the Number of Clusters

Unlike K-means and hierarchical clustering, mclust automatically selects

the number of clusters (in this case, two). It does this by choosing the

number of clusters for which the Bayesian Information Criteria (BIC) has

the largest value. BIC (similar to AIC) is a general tool to find the best

model amongst a candidate set of models. For example, AIC (or BIC) is

commonly used to select a model in stepwise regression; see “Model

Selection and Stepwise Regression”. BIC works by selecting the best

fitting model with a penalty for the number of parameters in the model. In

the case of model-based clustering, adding more clusters will always

improve the fit at the expense of introducing additional parameters in the

model.

You can plot the BIC value for each cluster size using a function in hclust:



plot(mcl, what='BIC', ask=FALSE)

The number of clusters—or number of different multivariate normal

models (components)—is shown on the x-axis (see Figure 7-11).

Figure 7-11. BIC scores for the stock return data for different numbers of clusters

(components)



This plot is similar to the elbow plot used to identify the number of clusters

to choose for K-means, except the value being plotted is BIC instead of

percent of variance explained (see Figure 7-6). One big difference is that

instead of one line, mclust shows 14 different lines! This is because

mclust is actually fitting 14 different models for each cluster size, and

ultimately it chooses the best-fitting model.

Why does mclust fit so many models to determine the best set of

multivariate normals? It’s because there are different ways to parameterize

the covariance matrix for fitting a model. For the most part, you do not

need to worry about the details of the models and can simply use the model

chosen by mclust. In this example, according to BIC, three different

models (called VEE, VEV, and VVE) give the best fit using two

components.

Note

Model-based clustering is a rich and rapidly developing area of study, and

the coverage in this text only spans a small part of the field. Indeed, the

mclust help file is currently 154 pages long. Navigating the nuances of

model-based clustering is probably more effort than is needed for most

problems encountered by data scientists.

Model-based clustering techniques do have some limitations. The methods

require an underlying assumption of a model for the data, and the cluster

results are very dependent on that assumption. The computations

requirements are higher than even hierarchical clustering, making it

difficult to scale to large data. Finally, the algorithm is more sophisticated

and less accessible than that of other methods.



Key Ideas for Model-Based Clustering

Clusters are assumed to derive from different data-generating

processes with different probability distributions.

Different models are fit, assuming different numbers of (typically

normal) distributions.

The method chooses the model (and the associated number of

clusters) that fits the data well without using too many parameters

(i.e., overfitting).

Further Reading

For more detail on model-based clustering, see the mclust documentation.

Scaling and Categorical Variables

Unsupervised learning techniques generally require that the data be

appropriately scaled. This is different from many of the techniques for

regression and classification in which scaling is not important (an exception

is K-nearest neighbors; see “K-Nearest Neighbors”).



Key Terms for Scaling Data

Scaling

Squashing or expanding data, usually to bring multiple variables to

the same scale.

Normalization

One method of scaling—subtracting the mean and dividing by the

standard deviation.

Synonym

Standardization

Gower’s distance

A scaling algorithm applied to mixed numeric and categoprical

data to bring all variables to a 0–1 range.

For example, with the personal loan data, the variables have widely

different units and magnitude. Some variables have relatively small values

(e.g., number of years employed), while others have very large values (e.g.,

loan amount in dollars). If the data is not scaled, then the PCA, K-means,

and other clustering methods will be dominated by the variables with large

values and ignore the variables with small values.

Categorical data can pose a special problem for some clustering procedures.

As with K-nearest neighbors, unordered factor variables are generally

converted to a set of binary (0/1) variables using one hot encoding (see

“One Hot Encoder”). Not only are the binary variables likely on a different

scale from other data, the fact that binary variables have only two values

can prove problematic with techniques such as PCA and K-means.

Scaling the Variables



Variables with very different scale and units need to be normalized

appropriately before you apply a clustering procedure. For example, let’s

apply kmeans to a set of data of loan defaults without normalizing:

df <- defaults[, c('loan_amnt', 'annual_inc', 'revol_bal',

'open_acc', 'dti', 'revol_util')]

km <- kmeans(df, centers=4, nstart=10)

centers <- data.frame( size=km$size, km$centers)

round(centers, digits=2)

size loan_amnt annual_inc revol_bal open_acc dti revol_util

1 55 23157.27 491522.49 83471.07 13.35 6.89 58.742 1218 21900.96 165748.53 38299.44 12.58 13.43 63.58

3 7686 18311.55 83504.68 19685.28 11.68 16.80 62.184 14177 10610.43 42539.36 10277.97 9.60 17.73 58.05

The variables annual_inc and revol_bal dominate the clusters, and the

clusters have very different sizes. Cluster 1 has only 55 members with

comparatively high income and revolving credit balance.

A common approach to scaling the variables is to convert them to z-scores

by subtracting the mean and dividing by the standard deviation. This is

termed standardization or normalization (see “Standardization

(Normalization, Z-Scores)” for more discussion about using z-scores):

See what happens to the clusters when kmeans is applied to the normalized

data:

df0 <- scale(df)

km0 <- kmeans(df0, centers=4, nstart=10)

centers0 <-scale(km0$centers, center=FALSE,

scale=1/attr(df0, 'scaled:scale'))



centers0 <- scale(centers0, center=-attr(df0, 'scaled:center'),

scale=F)

data.frame(size=km0$size, centers0)

size loan_amnt annual_inc revol_bal open_acc dti revol_util

1 5429 10393.60 53689.54 6077.77 8.69 11.35 30.69

2 6396 13310.43 55522.76 16310.95 14.25 24.27 59.573 7493 10482.19 51216.95 11530.17 7.48 15.79 77.68

4 3818 25933.01 116144.63 32617.81 12.44 16.25 66.01

The cluster sizes are more balanced, and the clusters are not just dominated

by annual_inc and revol_bal, revealing more interesting structure in the

data. Note that the centers are rescaled to the original units in the preceding

code. If we had left them unscaled, the resulting values would be in terms

of z-scores, and therefore less interpretable.

Note

Scaling is also important for PCA. Using the z-scores is equivalent to using

the correlation matrix (see “Correlation”) instead of the covariance matrix

in computing the principal components. Software to compute PCA usually

has an option to use the correlation matrix (in R, the princomp function has

the argument cor).

Dominant Variables

Even in cases where the variables are measured on the same scale and

accurately reflect relative importance (e.g., movement to stock prices), it

can sometimes be useful to rescale the variables.

Suppose we add Alphabet (GOOGL) and Amazon (AMZN) to the analysis

in “Interpreting Principal Components”.

syms <- c('AMZN', 'GOOGL' 'AAPL', 'MSFT', 'CSCO', 'INTC', 'CVX',

'XOM',

'SLB', 'COP', 'JPM', 'WFC', 'USB', 'AXP', 'WMT', 'TGT', 'HD',

'COST')

top_sp1 <- sp500_px[row.names(sp500_px)>='2005-01-01', syms]

sp_pca1 <- princomp(top_sp1)

screeplot(sp_pca1)



The screeplot displays the variances for the top principal components. In

this case, the screeplot in Figure 7-12 reveals that the variances of the first

and second components are much larger than the others. This often

indicates that one or two variables dominate the loadings. This is, indeed,

the case in this example:

round(sp_pca1$loadings[,1:2], 3)

Comp.1 Comp.2

GOOGL 0.781 0.609

0.593 -0.792AMZN

AAPL 0.078 0.004

MSFT 0.029 0.002

CSCO 0.017 -0.001

INTC 0.020 -0.001

CVX 0.068 -0.021

XOM 0.053 -0.005

...

The first two principal components are almost completely dominated by

GOOGL and AMZN. This is because the stock price movements of

GOOGL and AMZN dominate the variability.

To handle this situation, you can either include them as is, rescale the

variables (see “Scaling the Variables”), or exclude the dominant variables

from the analysis and handle them separately. There is no “correct”

approach, and the treatment depends on the application.



Figure 7-12. A screeplot for a PCA of top stocks from the S&P 500 including

GOOGL and AMZN

Categorical Data and Gower’s Distance

In the case of categorical data, you must convert it to numeric data, either

by ranking (for an ordered factor) or by encoding as a set of binary

(dummy) variables. If the data consists of mixed continuous and binary

variables, you will usually want to scale the variables so that the ranges are



similar; see “Scaling the Variables”. One popular method is to use Gower’s

distance.

The basic idea behind Gower’s distance is to apply a different distance

metric to each variable depending on the type of data:

For numeric variables and ordered factors, distance is calculated as the

absolute value of the difference between two records (Manhattan

distance).

For categorical variables, the distance is 1 if the categories between two

records are different and the distance is 0 if the categories are the same.

Gower’s distance is computed as follows:

1. Compute the distance for all pairs of variables i and j for each

record.

2. Scale each pair so the minimum is 0 and the maximum is 1.

3. Add the pairwise scaled distances between variables together, either

using a simple or weighted mean, to create the distance matrix.

To illustrate Gower’s distance, take a few rows from the loan data:

> x = defaults[1:5, c('dti', 'payment_inc_ratio', 'home',

'purpose')]

> x

dti payment_inc_ratio home purpose

1 <dbl>1.00 2.39320<dbl> <fctr>RENT <fctr>

car

2 5.55 4.57170 OWN small_business

3 18.08 9.71600 RENT other

45 10.087.06 12.215203.90888 RENTRENT debt_consolidation

other



The function daisy in the cluster package can be used to compute

Gower’s distance:

> library(cluster)

> daisy(x, metric='gower')

Dissimilarities :

1 2 3 4

2 0.6220479

3 0.6863877 0.8143398

4 0.6329040 0.7608561 0.4307083

5 0.3772789 0.5389727 0.3091088 0.5056250

All distances are between 0 and 1. The pair of records with the biggest

distance is 2 and 3: neither has the same values for home or purpose and

they have very different levels of dti (debt-to-income) and

payment_inc_ratio. Records 3 and 5 have the smallest distance because

they share the same values for home or purpose.

You can apply hierarchical clustering (see “Hierarchical Clustering”) to the

resulting distance matrix using hclust to the output from daisy:

df <- defaults[sample(nrow(defaults), 250),

c('dti', 'payment_inc_ratio', 'home', 'purpose')]

d = daisy(df, metric='gower')

hcl <- hclust(d)

dnd <- as.dendrogram(hcl)

plot(dnd, leaflab='none')

The resulting dendrogram is shown in Figure 7-13. The individual records

are not distinguishable on the x-axis, but we can examine the records in one

of the subtrees (on the left, using a “cut” of 0.5), with this code:

> df[labels(dnd_cut$lower[[1]]),]

dti payment_inc_ratio home purpose



<dbl> <dbl> <fctr> <fctr>

1 24.57 0.83550 RENT other

2 34.95 5.02763 RENT other

3 1.51 2.97784 RENT other

4 8.73 14.42070 RENT other

5 12.05 9.96750 RENT other

6 10.15 11.43180 RENT other

7 19.61 14.04420 RENT other

8 20.92 6.90123 RENT other

9 22.49 9.36000 RENT other

This subtree entirely consists of renters with a loan purpose labeled as

“other.” While strict separation is not true of all subtrees, this illustrates that

the categorical variables tend to be grouped together in the clusters.



Figure 7-13. A dendrogram of hclust applied to a sample of loan default data with

mixed variable types

Problems with Clustering Mixed Data

K-means and PCA are most appropriate for continuous variables. For

smaller data sets, it is better to use hierarchical clustering with Gower’s

distance. In principle, there is no reason why K-means can’t be applied to



binary or categorical data. You would usually use the “one hot encoder”

representation (see “One Hot Encoder”) to convert the categorical data to

numeric values. In practice, however, using K-means and PCA with binary

data can be difficult.

If the standard z-scores are used, the binary variables will dominate the

definition of the clusters. This is because 0/1 variables take on only two

values and K-means can obtain a small within-cluster sum-of-squares by

assigning all the records with a 0 or 1 to a single cluster. For example,

apply kmeans to loan default data including factor variables home and

pub_rec_zero:

df <- model.matrix(~ -1 + dti + payment_inc_ratio + home +

pub_rec_zero,

data=defaults)

df0 <- scale(df)km0 <- kmeans(df0, centers=4, nstart=10)

centers0 <-scale(km0$centers, center=FALSE,

scale=1/attr(df0, 'scaled:scale'))

scale(centers0, center=-attr(df0, 'scaled:center'), scale=F)

dti payment_inc_ratio homeMORTGAGE homeOWN homeRENT

pub_rec_zero

1 17.02 9.10 0.00 0 1.00

1.00

2 17.47 8.43 1.00 0 0.00

1.00

3 17.23 9.28 0.00 1 0.00

0.92

4 16.50 8.09 0.52 0 0.48

0.00

The top four clusters are essentially proxies for the different levels of the

factor variables. To avoid this behavior, you could scale the binary

variables to have a smaller variance than other variables. Alternatively, for

very large data sets, you could apply clustering to different subsets of data

taking on specific categorical values. For example, you could apply

clustering separately to those loans made to someone who has a mortgage,



owns a home outright, or rents.

Key Ideas for Scaling Data

Variables measured on different scales need to be transformed to

similar scales, so that their impact on algorithms is not determined

mainly by their scale.

A common scaling method is normalization (standardization)—

subtracting the mean and dividing by the standard deviation.

Another method is Gower’s distance, which scales all variables to

the 0–1 range (it is often used with mixed numeric and categorical

data).

Summary

For dimension reduction of numeric data, the main tools are either principal

components analysis or K-means clustering. Both require attention to

proper scaling of the data to ensure meaningful data reduction.

For clustering with highly structured data in which the clusters are well

separated, all methods will likely produce a similar result. Each method

offers its own advantage. K-means scales to very large data and is easily

understood. Hierarchical clustering can be applied to mixed data types—

numeric and categorical—and lends itself to an intuitive display (the

dendrogram). Model-based clustering is founded on statistical theory and

provides a more rigorous approach, as opposed to the heuristic methods.

For very large data, however, K-means is the main method used.

With noisy data, such as the loan and stock data (and much of the data that

a data scientist will face), the choice is more stark. K-means, hierarchical

clustering, and especially model-based clustering all produce very different



solutions. How should a data scientist proceed? Unfortunately, there is no

simple rule of thumb to guide the choice. Ultimately, the method used will

depend on the data size and the goal of the application.

1 This and subsequent sections in this chapter © 2017 Datastats, LLC, Peter

Bruce and Andrew Bruce, used by permission.
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